←  Back to all notes

Concentration inequalities for nearest neighbors in hypercubes

Sanjit Dandapanthula

June 26, 2023


Here’s a cool result about the concentration of $k$th nearest neighbors of points drawn uniformly randomly from the $d$-dimensional unit hypercube. First, suppose we draw $X_1, \cdots, X_n$ uniformly randomly from $[0, 1]^d$. For $1 \leq k \leq n$ and $1 \leq i \leq n$, we define $R_k(X_i)$ to be the distance from $X_i$ to its $k$th nearest neighbor.

Concentration of nearest neighbors

If we define $R_{k, \min} = \min_{1 \leq i \leq n} R_k(X_i)$, then we’ll show that there exists a constant $a > 0$ (depending only on $d$) so that:

\[\begin{align*} \mathbb{P}\left( R_{k, \min} \leq a (k / n)^{1/d} \right) \leq n e^{-k/3}. \end{align*}\]

Similarly, if we define $R_{k, \max} = \max_{1 \leq i \leq n} R_k(X_i)$, we’ll show that there exists a constant $\tilde{a} > 0$ (depending only on $d$) so that:

\[\begin{align*} \mathbb{P}\left( R_{k, \max} \geq \tilde{a} (k / n)^{1/d} \right) \leq n e^{-k/3}. \end{align*}\]

This result is really neat - it shows that $\lbrace R_k(X_i) \rbrace_{i=1}^n$ generally grows like $(k / n)^{1/d}$ (as $n$ and $k$ are varied) with high probability. This statement looks a bit difficult to show, but we’ll break it down into easier pieces.

Binomial concentration

First, we’ll show a set of concentration inequalities for binomial random variables; it will become clear why these are useful later. Namely, if $X \sim \operatorname{Ber}(n, p)$, we’ll show:

\[\begin{align*} \mathbb{P}(X \geq (1 + \delta) np) \leq \exp\left( -\frac{\delta^2 np}{3} \right). \end{align*}\]

Furthermore, we’ll show that:

\[\begin{align*} \mathbb{P}(X \leq (1 - \delta) np) \leq \exp\left( -\frac{\delta^2 np}{2} \right). \end{align*}\]

We know that for a binomial random variable $\mathbb{E}[X] = np$, but these results show that $X$ concentrates around its mean with high probability. In order to show these inequalities, we’ll use the following elementary inequality of real variables (for $\delta \geq 0$):

\[\begin{align*} \frac{e^\delta}{(1 + \delta)^{1 + \delta}} \leq \exp\left( -\frac{\delta^2}{2 + \delta} \right). \end{align*}\]

Define $X = \sum_{i=1}^n X_i$ where $X_i \sim \operatorname{Ber}(p)$ are i.i.d. so that $X \sim \operatorname{Bin}(n, p)$. Then, by independence of the $X_i$, the Chernoff bound gives:

\[\begin{align*} \mathbb{P}(X \geq t) \leq \inf_{\lambda \geq 0} \left\{ e^{-\lambda t} \mathbb{E}[e^{\lambda X}] \right\} = \inf_{\lambda \geq 0} \left\{ e^{-\lambda t} \mathbb{E}\left[ \exp\left( \lambda \sum_{i=1}^n X_i \right) \right] \right\} = \inf_{\lambda \geq 0} \left\{ e^{-\lambda t} \prod_{i=1}^n \mathbb{E}[e^{\lambda X_i}] \right\}. \end{align*}\]

However, because $1 + x \leq e^x$ using the Taylor series of $e^x$, we have:

\[\begin{align*} \mathbb{E}[e^{\lambda X_i}] = p e^\lambda + (1 - p) = 1 + p (e^\lambda - 1) \leq e^{p (e^\lambda - 1)}. \end{align*}\]

Therefore, we have the bound:

\[\begin{align*} \inf_{\lambda \geq 0} \left\{ e^{-\lambda t} \prod_{i=1}^n \mathbb{E}[e^{\lambda X_i}] \right\} \leq \inf_{\lambda \geq 0} \left\{ e^{-\lambda t} \prod_{i=1}^n e^{p (e^\lambda - 1)} \right\} = \inf_{\lambda \geq 0} \left\{ e^{-\lambda t + np (e^\lambda - 1)} \right\}. \end{align*}\]

Choose $t = (1 + \delta) np$ so that:

\[\begin{align*} \mathbb{P}\left( X \geq (1 + \delta) np \right) \leq \inf_{\lambda \geq 0} \left\{ e^{-\lambda (1 + \delta) np + np (e^\lambda - 1)} \right\}. \end{align*}\]

We optimize this bound over $\lambda$ by taking the derivative and setting it equal to zero:

\[\begin{align*} \left( -(1 + \delta) np + np e^\lambda \right) \left( e^{-\lambda (1 + \delta) np + np (e^\lambda - 1)} \right) = 0 \implies -(1 + \delta) np + np e^\lambda = 0 \implies \lambda = \log(1 + \delta). \end{align*}\]

Now, recall the given inequality for $\delta \geq 0$:

\[\begin{align*} \frac{e^\delta}{(1 + \delta)^{1 + \delta}} \leq \exp\left( -\frac{\delta^2}{2 + \delta} \right). \end{align*}\]

Substituting this value of $\lambda$ and using the above inequality, we see that:

\[\begin{align*} \inf_{\lambda \geq 0} \left\{ e^{-\lambda (1 + \delta) np + np (e^\lambda - 1)} \right\} \leq \frac{e^{\delta np}}{(1 + \delta)^{(1 + \delta) np}} \leq \exp\left( -\frac{\delta^2 np}{2 + \delta} \right) \leq \exp\left( -\frac{\delta^2 np}{3} \right). \end{align*}\]

This gives the first bound. Similarly, by independence of the $X_i$, the Chernoff bound gives:

\[\begin{align*} \mathbb{P}(X \leq t) & = \mathbb{P}(-X \geq -t) \\ & \leq \inf_{\lambda \geq 0} \left\{ e^{\lambda t} \mathbb{E}[e^{-\lambda X}] \right\} \\ & = \inf_{\lambda \geq 0} \left\{ e^{\lambda t} \mathbb{E}\left[ \exp\left( -\lambda \sum_{i=1}^n X_i \right) \right] \right\} \\ & = \inf_{\lambda \geq 0} \left\{ e^{\lambda t} \prod_{i=1}^n \mathbb{E}[e^{-\lambda X_i}] \right\}. \end{align*}\]

However, because $1 + x \leq e^x$ using the Taylor series of $e^x$, we have:

\[\begin{align*} \mathbb{E}[e^{-\lambda X_i}] = p e^{-\lambda} + (1 - p) = 1 + p (e^{-\lambda} - 1) \leq e^{p (e^{-\lambda} - 1)}. \end{align*}\]

Therefore, we have the bound:

\[\begin{align*} \inf_{\lambda \geq 0} \left\{ e^{\lambda t} \prod_{i=1}^n \mathbb{E}[e^{-\lambda X_i}] \right\} \leq \inf_{\lambda \geq 0} \left\{ e^{\lambda t} \prod_{i=1}^n e^{p (e^{-\lambda} - 1)} \right\} = \inf_{\lambda \geq 0} \left\{ e^{\lambda t + np (e^{-\lambda} - 1)} \right\}. \end{align*}\]

Choose $t = (1 - \delta) np$ so that:

\[\begin{align*} \mathbb{P}\left( X \leq (1 - \delta) np \right) \leq \inf_{\lambda \geq 0} \left\{ e^{\lambda (1 - \delta) np + np (e^{-\lambda} - 1)} \right\}. \end{align*}\]

We optimize this bound over $\lambda$ by taking the derivative and setting it equal to zero:

\[\begin{align*} \left( (1 - \delta) np + np e^{-\lambda} \right) \left( e^{\lambda (1 - \delta) np + np (e^{-\lambda} - 1)} \right) = 0 \implies (1 - \delta) np + np e^{-\lambda} = 0 \implies \lambda = -\log(1 - \delta). \end{align*}\]

Now, recall the given inequality for $\delta \geq 0$:

\[\begin{align*} \frac{e^\delta}{(1 + \delta)^{1 + \delta}} \leq \exp\left( -\frac{\delta^2}{2 + \delta} \right). \end{align*}\]

Substituting this value of $\lambda$ and using the above inequality, we see that:

\[\begin{align*} \inf_{\lambda \geq 0} \left\{ e^{\lambda (1 + \delta) np + np (e^{-\lambda} - 1)} \right\} \leq \frac{e^{-\delta np}}{(1 - \delta)^{(1 - \delta) np}} \leq \exp\left( -\frac{\delta^2 np}{2 - \delta} \right) \leq \exp\left( -\frac{\delta^2 np}{2} \right). \end{align*}\]

These are the two bounds we wanted to show, so we are done; in fact, the proof shows that these bounds hold for all $\delta > 0$. Phew - that was step one. Now, back to the original problem.

Proof of concentration inequality

First, notice that $\mathbb{P}(R_{k, \min} \leq t)$ is the probability of at least one of $R_k(X_i)$ being less than $t$ for $1 \leq i \leq n$. Therefore, the union bound gives:

\[\begin{align*} \mathbb{P}(R_{k, \min} \leq t) = \mathbb{P}\left( \bigcup_{i=1}^n\ \{ R_k(X_i) \leq t \} \right) \leq \sum_{i=1}^n \mathbb{P}(R_k(X_i) \leq t). \end{align*}\]

In particular, it will suffice to show that there exists $a > 0$ depending only on $d$ such that for any $1 \leq i \leq n$:

\[\begin{align*} \mathbb{P}\left( R_k(X_i) \leq a (k / n)^{1/d} \right) \leq e^{-k/3}. \end{align*}\]

But for any $1 \leq i \leq n$, we know that $\mathbb{P}(R_k(X_i) \leq t)$ is the probability of at least $k - 1$ of the remaining $n - 1$ points landing in $S = B_t(X_i) \cap [0, 1]^d$. However, the probability of any given point landing in $S$ is equal to the volume of $S$ (integrating against the uniform density), since $\mu([0, 1]^d) = 1$. We know that $\mu(S) \geq \frac{1}{2^d} \cdot \mu(B_t(X_i))$; recall the volume of the $d$-ball:

\[\begin{align*} \mu(B_t(X_i)) = \frac{\pi^d}{\Gamma\left( \frac{d}{2} + 1 \right)} \cdot t^d. \end{align*}\]

In particular, $\frac{1}{2^d} \cdot \mu(B_t(X_i)) = C_d t^d \leq \mu(S)$ for some positive constant $C_d$ depending only on the dimension $d$. Then, if $Y \sim \operatorname{Bin}(n - 1,\ C_d t^d)$:

\[\begin{align*} \mathbb{P}(R_k(X_i) \leq t) \leq \mathbb{P}(Y \geq k - 1). \end{align*}\]

Then, note that, assuming $a$ is chosen so that $\delta \in (0, 1)$:

\[\begin{align*} (1 + \delta) (n - 1) C_d t^d = k \iff \delta = \frac{k - 1}{(n - 1) C_d t^d} - 1 \iff \delta = \frac{(k - 1) n}{k (n - 1) C_d a^d} - 1. \end{align*}\]

Recall that $\frac{x}{x - 1} \in [1, 2]$ for all $x \geq 2$. Then, we we can use the bound on binomial variables derived above to find that (substituting $t = a (k / n)^{1/d}$ and assuming that $a$ is chosen such that $\frac{1}{C_d a^d} \geq 1$):

\[\begin{align*} \mathbb{P}(Y \geq k - 1) & \leq \exp\left( -\frac{1}{3} \left( \frac{\frac{n}{n - 1}}{\frac{k}{k - 1} C_d a^d} - 1 \right)^2 (n - 1) C_d t^d \right) \\ & \leq \exp\left( -\frac{1}{3} \left( \frac{(1 - C_d a^d)}{2 C_d a^d} \right)^2 (n - 1) C_d t^d \right) \\ & \leq \exp\left( -\frac{1}{3} \left( \frac{(1 - C_d a^d)}{2 C_d a^d} \right)^2 C_d a^d \frac{k}{2} \right). \end{align*}\]

Finally, choosing $a$ such that $\left( \frac{(1 - C_d a^d)}{2 C_d a^d} \right)^2 \cdot \frac{C_d a^d}{2} \geq 1$ gives the result:

\[\begin{align*} \left( \frac{(1 - C_d a^d)}{2 C_d a^d} \right)^2 \cdot \frac{C_d a^d}{2} = \frac{1 - 2 C_d a^d + C_d^2 (a_d)^2}{8 C_d a^d} \geq 1 \iff 1 - 10 C_d a^d + 2 C_d^2 (a^d)^2 \geq 0 \end{align*}\]

But now we compute the roots of this quadratic:

\[\begin{align*} 1 - 10 C_d a^d + C_d^2 (a^d)^2 = 0 \iff a^d = \frac{10 C_d \pm \sqrt{100 C_d^2 - 4 C_d^2}}{2} = \left( 5 \pm 2 \sqrt{6} \right) C_d. \end{align*}\]

Therefore, it suffices to choose $a = (\epsilon_d C_d)^{1/d}$ with $\epsilon_d$ chosen so that:

\[\begin{align*} \epsilon_d < \min\left\{ 5 - 2 \sqrt{6},\ \frac{1}{2 C_d^2} \right\}. \end{align*}\]

This choice of $a$ satisfies $a^d < \left( 5 - 2 \sqrt{6} \right) C_d$ so that the quadratic $1 - 10 C_d a^d + 2 C_d^2 (a^d)^2 \geq 0$. Furthermore, $a$ satisfies $\frac{1}{C_d a^d} \geq \frac{1}{5 - 2 \sqrt{6}} \geq 1$. Notice that this value of $a$ also has:

\[\begin{align*} \delta = \frac{(k - 1) n}{k (n - 1) \epsilon_d C_d^2} - 1 \geq \frac{1}{2 \epsilon_d C_d^2} - 1 > 0. \end{align*}\]

This proves the desired concentration inequality for $R_{k, \min}$; namely, for this value of $a$ we have:

\[\begin{align*} \mathbb{P}\left( R_{k, \min} \leq a (k / n)^{1/d} \right) \leq \sum_{i=1}^n \mathbb{P}\left( R_k(X_i) \leq a (k / n)^{1/d} \right) \leq n e^{-k/3}. \end{align*}\]

Similarly, we obtain a bound on $R_{k, \max}$. First, notice that $\mathbb{P}(R_{k, \max} \geq t)$ is the probability of at least one of $R_k(X_i)$ being larger than $t$ for $1 \leq i \leq n$. Therefore, the union bound gives:

\[\begin{align*} \mathbb{P}(R_{k, \max} \geq t) = \mathbb{P}\left( \bigcup_{i=1}^n\ \{ R_k(X_i) \geq t \} \right) \leq \sum_{i=1}^n \mathbb{P}(R_k(X_i) \geq t). \end{align*}\]

In particular, it will suffice to show that there exists $\tilde{a} > 0$ depending only on $d$ such that for any $1 \leq i \leq n$:

\[\begin{align*} \mathbb{P}\left( R_k(X_i) \geq \tilde{a} (k / n)^{1/d} \right) \leq e^{-k/3}. \end{align*}\]

But for any $1 \leq i \leq n$, we know that $\mathbb{P}(R_k(X_i) \geq t)$ is the probability of at most $k - 2$ of the remaining $n - 1$ points landing in $S = B_t(X_i) \cap [0, 1]^d$. However, the probability of any given point landing in $S$ is equal to the volume of $S$ (integrating against the uniform density), since $\mu([0, 1]^d) = 1$. We know that $\mu(S) \leq \mu(B_t(X_i))$; recall the volume of the $d$-ball:

\[\begin{align*} \mu(B_t(X_i)) = \frac{\pi^d}{\Gamma\left( \frac{d}{2} + 1 \right)} \cdot t^d. \end{align*}\]

In particular, $\mu(S) \leq \mu(B_t(X_i)) = \tilde{C}_d t^d$ for some positive constant $\tilde{C}_d$ depending only on the dimension $d$. Then, if $Y \sim \operatorname{Bin}(n - 1,\ \tilde{C}_d t^d)$:

\[\begin{align*} \mathbb{P}(R_k(X_i) \geq t) \leq \mathbb{P}(Y \leq k - 2) \leq \mathbb{P}(Y \leq k). \end{align*}\]

Then, substituting $t = \tilde{a} (k / n)^{1/d}$, note that if $\tilde{a}$ is chosen so that $\delta > 0$:

\[\begin{align*} (1 - \delta) (n - 1) \tilde{C}_d t^d = k \iff \delta = 1 - \frac{k}{(n - 1) \tilde{C}_d t^d} \iff \delta = 1 - \frac{n}{(n - 1) \tilde{C}_d \tilde{a}^d} \end{align*}\]

Then, we we can use the bound derived above to find that (substituting $t = \tilde{a} (k / n)^{1/d}$ and assuming that $a$ is chosen such that $\frac{1}{\tilde{C}_d a^d} \geq 1$):

\[\begin{align*} \mathbb{P}(Y \leq k) & \leq \exp\left( -\frac{1}{2} \left( \frac{n}{(n - 1) \tilde{C}_d \tilde{a}^d} - 1 \right)^2 (n - 1) \tilde{C}_d t^d \right) \\ & \leq \exp\left( -\frac{1}{2} \left( \frac{1 - \tilde{C}_d \tilde{a}^d}{\tilde{C}_d \tilde{a}^d} \right)^2 (n - 1) \tilde{C}_d t^d \right) \\ & \leq \exp\left( -\frac{1}{3} \cdot \frac{3}{2} \left( \frac{1 - \tilde{C}_d \tilde{a}^d}{\tilde{C}_d \tilde{a}^d} \right)^2 \tilde{C}_d \tilde{a}^d \frac{k}{2} \right). \end{align*}\]

Finally, choosing $a$ such that $3 \left( \frac{1 - \tilde{C}_d \tilde{a}^d}{\tilde{C}_d \tilde{a}^d} \right)^2 \cdot \frac{\tilde{C}_d \tilde{a}^d}{4} \geq 1$ gives the result:

\[\begin{align*} 3 \left( \frac{1 - \tilde{C}_d \tilde{a}^d}{\tilde{C}_d \tilde{a}^d} \right)^2 \cdot \frac{\tilde{C}_d \tilde{a}^d}{4} \geq 1 \iff \frac{(1 - \tilde{C}_d \tilde{a}^d)^2}{\tilde{C}_d \tilde{a}^d} \geq \frac{4}{3} \iff 1 - \frac{10}{3} \tilde{C}_d \tilde{a}^d + \tilde{C}_d^2 (\tilde{a}^d)^2 \geq 0. \end{align*}\]

But now we compute the roots of this quadratic:

\[\begin{align*} 1 - \frac{10}{3} \tilde{C}_d \tilde{a}^d + \tilde{C}_d^2 (\tilde{a}^d)^2 = 0 \iff \tilde{a}^d = \frac{\frac{10}{3} \tilde{C}_d \pm \sqrt{\frac{100}{9} \tilde{C}_d^2 - 4 \tilde{C}_d^2}}{2} = \left( \frac{5}{3} \pm \frac{4}{3} \right) \tilde{C}_d. \end{align*}\]

Therefore, it suffices to choose $\tilde{a} = (\tilde{\epsilon}_d \tilde{C}_d)^{1/d}$ with $\tilde{\epsilon}_d$ chosen so that:

\[\begin{align*} \tilde{\epsilon}_d < \min\left\{ \frac{1}{3},\ \frac{1}{2 \tilde{C}_d^2} \right\}. \end{align*}\]

This choice of $\tilde{a}$ satisfies $\tilde{a}^d < \frac{1}{3} \tilde{C}_d$ so that the quadratic $1 - \frac{10}{3} \tilde{C}_d \tilde{a}^d + \tilde{C}_d^2 (\tilde{a}^d)^2 \geq 0$. Furthermore, $a$ satisfies $\frac{1}{\tilde{C}_d a^d} \geq \frac{1}{5 - 2 \sqrt{6}} \geq 1$. Notice that this value of $a$ also has:

\[\begin{align*} \delta = 1 - \frac{n}{(n - 1) \tilde{\epsilon}^d \tilde{C}_d^2} > 0. \end{align*}\]

This proves the desired concentration inequality for $R_{k, \max}$; namely, for this value of $\tilde{a}$ we have:

\[\begin{align*} \mathbb{P}\left( R_{k, \max} \geq \tilde{a} (k / n)^{1/d} \right) \leq \sum_{i=1}^n \mathbb{P}\left( R_k(X_i) \geq \tilde{a} (k / n)^{1/d} \right) \leq n e^{-k/3}. \end{align*}\]

Finally, this shows the desired result.


←  Back to all notes