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Chapter 1

Probability theory

In this chapter, we review some fundamental theorems from measure-theoretic probability theory. The

sources in this chapter are widely varied, and depend mostly on my style preference for each topic. I’ll

mostly assume the basics of measure-theoretic probability and only cover theorems that I find interesting

or useful. I’ll also state most of the theorems for real-valued random variables, but many of them can be

easily generalized to Rd-valued random variables (or even more general spaces).

1.1 Basic theorems

We start with Skorokhod’s representation theorem, which says that random variables converging in distri-

bution can be coupled in such a way that they converge almost surely.

Definition 1.1.1 (Convergence in distribution). We say that Xn
d−→ X (Xn converges in distribution to

X) if FXn(x) → FX(x) for all continuity points x of F . Probabilists also call this weak convergence, but

this actually corresponds to weak-* convergence in the sense of functional analysis.

Theorem 1.1.1 (Skorokhod representation). Let Xn
d−→ X. Then, there exists a probability space

(Ω̃, F̃ , P̃) and random variables Yn and Y on this space such that Yn
d
= Xn, Y

d
= X, and Yn

a.s.−→ Y .

Proof. The proof is easy; define the quantile transformation F−1(x) = inf{x ∈ R : F (x) ≥ x}, draw a

uniformly random variable U ∼ Unif(0, 1), and define Yn = F−1
Xn

(U) and Y = F−1
X (U).

Next, we state the portmanteau lemma, which characterizes convergence in distribution in a variety of

ways.

Theorem 1.1.2 (Portmanteau lemma). The following are equivalent:

1. Xn
d−→ X.
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2. E[f(Xn)] → E[f(X)] for all f ∈ Cb(R).

3. E[f(Xn)] → E[f(X)] for all Lipschitz f ∈ Cb(R).

4. lim infn→∞ E[f(Xn)] ≥ E[f(X)] for all lower semi-continuous f taking values in [0,∞].

5. lim infn→∞ P(Xn ∈ G) ≥ P(X ∈ G) for all open G.

6. P(Xn ∈ A) → P(X ∈ A) for all A ∈ B(R) with P(X ∈ ∂A) = 0.

Proof. To show (1) implies (2), use Skorokhod’s representation theorem (Theorem 1.1.1) and apply the

dominated convergence theorem since f is bounded. Obviously, (2) implies (3). To show (3) implies (4),

note that we can find Lipschitz functions fm ↑ f pointwise since f is l.s.c. (Proposition 3.2.2); take the

lim inf in n and then the limit in m using the monotone convergence theorem. It’s clear that (4) implies

(5) since 1G is l.s.c. Then, (5) implies (6) by taking complements to get a similar statement for closed set

and applying these results to int(A) and A. (6) implies (1) is obvious.

Continuous mappings preserve convergence in distribution, in probability, and almost surely.

Theorem 1.1.3 (Continuous mapping). If Xn → X in distribution, in probability, or almost surely, then

g(Xn) → g(X) in the same sense for any continuous function g.

Proof. The proof is obvious for almost sure convergence and convergence in probability, and for convergence

in distribution, use (2) in the portmanteau lemma (Theorem 1.1.2).

Now, we state Prokhorov’s theorem, which is a version of Bolzano-Weierstrass for probability measures.

Definition 1.1.2 (Tightness). A set {Xα}α∈A of random variables is tight if for all ϵ > 0 there exists a

compact set K such that supα∈A P(Xα ̸∈ K) ≤ ϵ.

Theorem 1.1.4 (Prokhorov). A set {Xα}α∈A of random variables is tight if and only if every sequence

has a weakly convergent subsequence.

Note that Prokhorov’s theorem generalizes to any Polish space (complete separable metric space).

Proof. For the forward direction, pick a sequence (Xn)
∞
n=1 ⊆ {Xα}α∈A and enumerate Q. By Cantor’s

diagonalization argument, extract a subsequence (FXnk
)∞k=1 such that FXnk

→ F on all rationals. Define

F (x) = infq>x F (q); it is easy to show that F is a cdf.

For the reverse direction, suppose every sequence in {Xα}α∈A has a weakly convergent subsequence but

{Xα}α∈A isn’t tight; in particular, there exists ϵ > 0 such that for all compact K we have supα∈A P(Xα ̸∈

K) > ϵ. Then, pick Kn = [−n, n] and choose Xn such that P(Xn ̸∈ Kn) > ϵ. Extract a weakly convergent
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subsequence Xnk

d−→ X and pick M > 0 so that P(X ∈ (−M,M)) > 1 − ϵ. But we know by (5) in the

portmanteau lemma (Theorem 1.1.2) that

1− ϵ < P(X ∈ (−M,M)) ≤ lim inf
n→∞

P(Xnk
∈ (−M,M)) ≤ 1− ϵ.

giving a contradiction.

In the context of the Banach-Alaoglu theorem (Theorem 2.7.6) and the Riesz-Markov representation

theorem, one can view Prokhorov’s theorem as saying that a family of probability measures is relatively

closed in the unit ball of the dual space of C0(R) (the space of finite Radon measures) if and only if it is

tight and closed.

1.2 Lévy’s continuity theorem and inversion formula

In this section, we give fundamental results about characteristic functions.

Definition 1.2.1 (Characteristic function). The characteristic function of a random variable X is φX(t) =

E[eitX ].

We start by proving the Lévy continuity theorem, which characterizes convergence in distribution in

terms of the convergence of characteristic functions.

Theorem 1.2.1 (Lévy continuity). Suppose that φXn → φ converges pointwise for all t ∈ R. Then, there

exists a random variable X such that Xn
d−→ X if and only if φ is continuous at 0.

Proof. The forward direction is immediate from the dominated convergence theorem, so we’ll focus on the

reverse direction. If (Xn)
∞
n=1 was tight, then every subsequence would have a further subsequence converg-

ing in distribution to some random variable X. But then by the portmanteau lemma, the characteristic

functions would converge along all subsequences to φX and the result would immediately follow. So Lévy’s

continuity theorem is really about how the continuity of φ at 0 implies tightness.

The key idea in this proof is to use the Lebesgue differentiation theorem. Note that φXn(0) = 1.
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Therefore, we study the following integral using the Lebesgue differentiation theorem and Fubini’s theorem:

0 = lim
δ↓0

1

2δ

∫ δ

−δ
ℜ(1− φXn(t)) dt

= lim
δ↓0

E
[
1

2δ

∫ δ

−δ
(1− cos(tXn)) dt

]
= lim

δ↓0
E
[
1− sin(δXn)

δXn

]
≥ lim

δ↓0
E
[
1|δXn|≥π

2

]
= lim

δ↓0

1

2
P(|Xn| ≥ π/δ).

The inequality follows because when x ≥ π, we have∣∣∣∣sin(x)x

∣∣∣∣ ≤ 1

π
=⇒ 1− sin(x)

x
≥ 1− 1

π
≥ 1

2
.

Picking δ small, we deduce that (Xn)
∞
n=1 is tight as desired.

In fact, the proof shows that the continuity of ℜ(φ) at 0 is the only necessary condition for convergence

in Lévy’s continuity theorem. We can also use the Lévy continuity theorem to immediately get a converse

to the weak law of large numbers.

Corollary 1.2.1.1 (Weak law of large numbers). If X1, . . . , Xn are i.i.d. with characteristic function φ

and mean µ, then 1
n

∑n
i=1Xi

p−→ µ if and only if φ is differentiable at 0 and φ′(0) = iµ.

Another corollary of the Lévy continuity theorem is the Lindeberg-Lévy central limit theorem.

Theorem 1.2.2 (Lindeberg-Lévy CLT). If X1, . . . , Xn are i.i.d. with mean µ and variance σ2, then

1√
n

∑n
i=1Xi

d−→ N (0, σ2).

An alternative proof of the Lindeberg-Lévy CLT is to use the idea of a Lindeberg exchange; we start

with Rademacher random variables in the sum and exchange them one-by-one for the Xi. Next, we state

Lévy’s inversion formula, which shows that random variables are uniquely determined by their characteristic

functions.

Theorem 1.2.3 (Lévy inversion formula). For continuity points a < b of FX , we have

FX(b)− FX(a) =
1

2π

∫ ∞

−∞

e−ita − e−itb

it
φX(t) dt.

Proof. The characteristic function φX is essentially the Fourier-Stieltjes transform of the distribution of

X (up to sign changes), so the result follows from the general inversion formula from Fourier analysis.
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1.3 Kolmogorov’s three-series lemma and the SLLN

In this section, we give a proof of the strong law of large numbers using Kolmogorov’s three-series lemma,

which fully characterizes almost sure convergence of a series of random variables. We start by proving

Kolmogorov’s maximal inequality.

Theorem 1.3.1 (Kolmogorov’s inequality). Suppose X1, . . . , Xn are independent with E[Xi] = 0 and

E[X2
i ] = σ2

i and let Sk = X1 + · · ·+Xk. Then, for all t > 0 we have

P
(

max
1≤k≤n

|Sk| ≥ t

)
≤ 1

t2

n∑
i=1

σ2
i .

Proof. Define the stopping time τ = inf{1 ≤ k ≤ n : |Sk| ≥ t} ∧ n. Then, we compute the following L2

estimate, since 1i≤τ is independent of Xi:

E[S2
τ ] =

n∑
i=1

E[X2
i 1i≤τ ] =

n∑
i=1

E[X2
i ]P(i ≤ τ) ≤

n∑
i=1

σ2
i .

Now the result follows from Chebyshev’s inequality applied to Sτ .

From Kolmogorov’s inequality we obtain the Khintchine-Kolmogorov two-series lemma.

Theorem 1.3.2 (Khintchine-Kolmogorov two-series lemma). Let (Xn)
∞
n=1 be independent with E[Xn] = µn

and E[X2
n] = σ2

n and let Sk = X1+ · · ·+Xk. Then, if
∑∞

n=1 µn < ∞ and
∑∞

n=1 σ
2
n < ∞, then Sk converges

almost surely and in L2.

Proof. Suppose without loss of generality that µn = 0 for all n ∈ N (consider Xn 7→ Xn − µn). We know

that

P (Sk converges) = P

( ∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{|Sn − Sm| ≤ 1/k}

)
.

By Kolmogorov’s inequality (Theorem 1.3.1), we have

P
(

max
m≤i≤n

|Si − Sm| ≥ 1/k

)
≤ k2

n∑
i=m

σ2
i ≤ k2

∞∑
i=m

σ2
i .

Carefully letting n → ∞ and then m → ∞, it follows that for any k ∈ N we have

P

( ∞⋂
m=1

∞⋃
n=m

{|Sn − Sm| ≥ 1/k}

)
= 0 =⇒ P

( ∞⋃
m=1

∞⋂
n=m

{|Sn − Sm| ≤ 1/k}

)
= 1.

Almost sure convergence now follows by taking an intersection over all k ∈ N; denote the limit as S. By

Fatou’s lemma, we have

E[(Sn − S)2] = E
[
lim inf
k→∞

(Sn − Sk)
2

]
≤ lim inf

k→∞
E[(Sn − Sk)

2] =
∞∑
i=n

σ2
i ,

which tends to zero as n → ∞; this gives the L2 convergence.
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Now, we use the two-series lemma to prove the three-series lemma.

Theorem 1.3.3 (Kolmogorov’s three-series lemma). Let λ > 0 be any constant (for instance, one could

pick λ = 1). Suppose (Xn)
∞
n=1 are independent and define X

(λ)
n := Xn 1|Xn|≤λ. Then,

∑∞
n=1Xn converges

almost surely if and only if the following three series converge:

1.
∑∞

n=1 P(|Xn| ≥ λ)

2.
∑∞

n=1 E[X
(λ)
n ]

3.
∑∞

n=1Var(X
(λ)
n ).

Proof. First, we’ll show the reverse direction. By the first Borel-Cantelli lemma and convergence of series

(1), we have that the probability that {|Xn| ≥ λ} infinitely often is zero; in particular, Xn = Yn eventually.

By the Khintchine-Kolmogorov two-series lemma (Theorem 1.3.2) and convergence of series (2) and (3),

we have that Yn (and therefore Xn) converges almost surely.

Next, we show the forward direction. If series (1) didn’t converge, then by the second Borel-Cantelli

lemma (and independence of the Xn), we would have |Xn| ≥ λ infinitely often with probability 1, and∑∞
n=1Xn would diverge almost surely. Note that convergence of series (3) implies convergence of series (2):∑∞
n=1(X

(λ)
n −E[X(λ)

n ]) converges almost surely by the two-series lemma (Theorem 1.3.2) and for
∑∞

n=1Xn

to converge almost surely, we need
∑∞

n=1 E[X
(λ)
n ] to converge. If series (3) didn’t converge, then by a slight

generalization of the Lindeberg-Lévy CLT, we would find that

1√∑n
i=1Var(X

(λ)
i )

n∑
i=1

(X
(λ)
i − E[X(λ)

i ])
d−→ N (0, 1).

This simple generalization follows from the Lévy continuity theorem (Theorem 1.2.1) and holds whenever

the sum of the variances of i.i.d. random variables diverges. Note that
∑n

i=1X
(λ)
i converges almost surely

whenever
∑n

i=1Xi converges almost surely since the summands are almost surely eventually equal. But

then this means that

1√∑n
i=1Var(X

(λ)
i )

n∑
i=1

X
(λ)
i

p−→ 0

since the denominator converges to 0. This is a contradiction (since N (0, 1) is nondegenerate), so series

(3) must converge.

Now, we need one last lemma before we can prove the strong law of large numbers.

Lemma 1.3.4 (Kronecker’s lemma). If an ↑ ∞ and
∑∞

n=1 bn/an converges then 1
an

∑n
m=1 bm → 0.

Proof. The proof follows from summation by parts.
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Kronecker’s lemma is useful because it changes questions about averages into questions about sums,

and we can use the three-series lemma to handle sums.

Theorem 1.3.5 (Strong law of large numbers). Let (Xn)
∞
n=1 be i.i.d. with E[Xn] = µ. Then, we have

1
n

∑n
i=1Xi

a.s.−→ µ.

Proof. Apply Kolmogorov’s three series lemma (Theorem 1.3.3) with X̃n = Xn/n. Then, use Kronecker’s

lemma to upgrade almost sure convergence of the series to almost sure convergence of the average.

We chose to prove the SLLN here using the Kolmogorov three series lemma in order to learn how to

deal with almost sure convergence of series. However, there is a slightly simpler proof of the SLLN using

Riesz’s lemma of the rising sun, which generalizes to prove the strong ergodic theorem.

Alternate proof of Theorem 1.3.5. The intuition for this proof comes from thinking of Sn as a stochas-

tic process which is asymptotically linear with slope µ. Let Eα = {lim supn→∞ Sn/n > α} and Fβ =

{lim infn→∞ Sn/n < β}, with G = {limn→∞ Sn/n exists and is equal to µ}. In particular, we have

Gc =
∞⋃

m=1

(Eµ+1/m ∪ Fµ−1/m),

so it suffices to show that P(Eα) = 0 for α > µ. Since Eα is tail-measurable, its probability is either 0 or

1 by Kolmogorov’s 0-1 law. Suppose that there is α ∈ R such that P(Eα) = 1; we want to show that this

forces α ≤ µ. By stationarity of (Xn)
∞
n=1, we have

P
(
sup
n>k

Sn − Sk

n− k
> α

)
= 1.

Now, we need a lemma before we continue the proof of the SLLN.

Lemma 1.3.6 (Riesz’s lemma of the rising sun). Fix {X1, . . . , XM} and n ∈ [M ]. Then, we say n ∈ L if

maxn<t≤M
St−Sn
t−n ≤ α and n ∈ D otherwise. Intuitively, imagine we’re plotting Sn over time and there is

light shining from the right with slope α. Here, L is the set of points which are in the light and D is the

set of points in the dark. Then, we have

1

|D|
∑

n−1∈D
Xn ≥ α.

This means that jumps after dark points contribute an average of at least α to the sum.

Proof. The trick of this proof is mostly visual. We can decompose D into disjoint intervals and it suffices

to obtain a bound on each dark interval I = [i, j]. Then, it is easy to show that Sj+1 keeps all of I in the

dark; in particular, this means that

Sj+1 − Si =

j+1∑
n=i+1

Xn ≥ α(j − i) = α|I|.
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We now complete the proof of the SLLN using Riesz’s lemma of the rising sun. Fix ϵ > 0 and choose

N large enough that P (max1≤n≤N Sn/n > α) > 1− ϵ and

E
[
|X1|1max1≤n≤N Sn/n≤α

]
< ϵ,

by the dominated convergence theorem. Then if M ≥ N , we know that

µM = E[SM ] = E[X1] + E

[ ∑
n−1∈D

Xn

]
+ E

 ∑
n−1∈L
n≤M−N

Xn

+ E

 ∑
n−1∈L
n>M−N

Xn

 .

To deal with the first term, note that P(n ∈ D) > 1− ϵ for n ≤ M −N . By Riesz’s rising sun lemma, we

have the estimate

E

[ ∑
n−1∈D

Xn

]
≥ αE[|D|] = α

M∑
n=1

P(n ∈ D) ≥ α(1− ϵ)(M −N).

We also obtain

E

[
M−N∑
n=1

Xn 1n−1∈L

]
≥ −

M−N∑
n=1

E[|Xn|1n−1∈L] ≥ −ϵ(M −N)

and

E

 ∑
n−1∈L
n>M−N

Xn

 ≥ −
∑

n>M−N

E[|Xn|] ≥ −E[|X1|]N.

Putting all the bounds together and taking M → ∞, we obtain µ ≥ α(1 − ϵ) − ϵ. Letting ϵ ↓ 0 gives the

result.

1.4 Disintegration of measure and regular conditional probability

In this section, we formalize the notion of conditioning on a set of measure zero using regular conditional

probabilities. In the following, denote by P(X ) the set of probability measures over X . Intuitively, the

disintegration of measure theorem says that we can write any measure as an average of measures for each

point x ∈ X , and this disintegration is essentially unique.

Theorem 1.4.1 (Disintegration of measure). Let X and Y be Polish spaces (complete and separable metric

spaces), let µ ∈ P(X × Y), and denote by µX the marginal of µ on X . Then, there exists a measurable

map x → πx from X into P(Y) (uniquely determined µX -almost everywhere) such that

µ =

∫
X
(δx ⊗ πx) dµX (x)

Here, the topology on P(Y) is the weak-* topology induced by weak convergence.
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The proof is lengthy so we outline it here but leave some technical details to the reader.

Proof. In a Polish space, there is always a countable family of bounded continuous functions {fn}∞n=1 that

separates point; the distance function is continuous, so we can consider the sequence of distance functions

from elements of a countable dense subset by separability (potentially capping them off at rationals). For

each f ∈ Cb(Y), we can define a measure νf on X by

νf (A) =

∫
A×Y

f(y) dµ(x, y).

Since νf ≪ µX , we can define the Radon-Nikodym derivative hf : X → R such that

νf (A) =

∫
A
hf (x) dµX (x).

Since the hf are defined µX -almost everywhere, we can define the linear functional Lx(fn) = hfn(x) for

each n ∈ N, for µX -almost every x ∈ X . Since Lx is linear and continuous, we can extend the definition to

all of Cb(Y) by the Stone-Weierstrass theorem and the fact that {fn}∞n=1 separates points. In particular,

linear combinations of the fn are dense in Cb(Y) with respect to uniform convergence on compact sets and

we can easily define Lx on these linear combinations. Note that Lx(f) ≥ 0 when f ≥ 0 and Lx(1) = 1, so

by the Riesz-Markov representation theorem, there exists a unique probability measure πx on Y such that

hf (x) = Lx(f) =

∫
Y
f(y) dπx(y).

It can be verified that any bounded continuous function f : X → P(Y), the map x 7→ hf (x) is measurable

so x 7→ πx is measurable as well. It’s now clear that µX -almost every x ∈ X , the measure πx concentrates

on the fiber π−1
X (x) (where πX is the projection from X × Y into the first coordinate). For bounded

measurable functions of the form g(x)f(y), one can verify that∫
X×Y

g(x)f(y) dµ(x, y) =

∫
X
g(x)

(∫
Y
f(y) dπx(y)

)
dµX (x),

so we can extend this to all bounded measurable functions by Dynkin’s π-λ theorem, showing that

µ =

∫
X
(δx ⊗ πx) dµX (x).

Essential uniqueness follows immediately because for any bounded measurable function f ,∫
X

∫
Y
f(x, y) dπx(y) dµX (x) =

∫
X×Y

f(x, y) dµ(x, y)

forces πx to be unique µX -almost everywhere.

The function (x,A) 7→ πx(A) is called a regular conditional probability and is denoted by P(A | X = x).

The disintegration of measure theorem shows that we can think of πx as a conditional probability given

11



x, but that such a thing is only uniquely defined for µX -almost every x ∈ X . In particular, if we let

(X,Y ) ∼ µ we can think of πx as a conditional probability given x in the sense that∫
A

∫
Y
f(y) dπx(y) dµX (x) =

∫
A
E[f(Y ) |X = x] dµX (x) =

∫
A×Y

f(y) dµ(x, y)

for any bounded measurable function f : Y → R and any measurable set A ∈ X .
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Chapter 2

Functional analysis

The study of functional analysis is a generalization of linear algebra to infinite-dimensional spaces. The key

algebraic structures are normed spaces, inner product spaces, Banach spaces, and Hilbert spaces. In this

chapter, we cover several important theorems of functional analysis to provide intuition for these spaces.

We assume an undergraduate background in linear algebra and real analysis. A lot of this chapter is taken

from Introductory Functional Analysis with Applications by Erwin Kreyszig, although some proofs come

from other sources and the content has been reorganized so that it makes the most sense to me.

2.1 Key algebraic structures

First, we begin with a few basic results about normed spaces. Note that all theorems for arbitrary normed

spaces or inner product spaces can be specialized to Banach spaces or Hilbert spaces respectively.

2.1.1 Normed spaces and Banach spaces

Definition 2.1.1 (Banach space). A Banach space is a complete normed space.

Here are a few examples of normed spaces and Banach spaces to keep in mind.

• Q with the absolute value is not a Banach space.

• C([0, 1]) with the 2-norm is not a Banach space.

• Rn with the Euclidean norm is a Banach space.

• C([0, 1]) with the sup-norm is a Banach space.

• Lp(R) with the Lp norm is a Banach space.

• Lp(N) (also called ℓp) with the p-norm is a Banach space.

13



We have two notions of basis in infinite dimensions.

Definition 2.1.2 (Hamel basis). A Hamel basis for a vector space X is a set of linearly independent

vectors that span X.

Note that every vector space has a Hamel basis due to Zorn’s lemma (Axiom A.1.1). However, Hamel

bases are not very useful in infinite dimensions because they are not unique and may not be countable.

Definition 2.1.3 (Schauder basis). A Schauder basis for a normed spaceX is a sequence of vectors (en)n∈N

such that every x ∈ X can be written as a unique series
∑∞

n=1 αnen where the series converges in the norm

of X.

A Hamel basis corresponds to a basis in the sense of linear algebra. A Schauder basis allows us to

write any vector as an infinite series and not just a finite linear combination. As an example, note that the

standard basis is a Schauder basis for Lp(N) for 1 ≤ p < ∞ but not for L∞(N) (e.g., take x = (1, 1, 1, . . . )).

Proposition 2.1.1. If a normed space X has a Schauder basis, then it is separable.

Proof. Pick rational coefficients in the series representation.

Definition 2.1.4 (Absolute convergence). A series
∑∞

n=1 xn (where the xn are in a normed space) is said

to converge absolutely if the series
∑∞

n=1∥xn∥ converges.

The key lemma that we use to get basic results in finite-dimensional normed spaces is the following.

Lemma 2.1.2 (Quantitative independence bound). If (xi)
n
i=1 is independent, then there exists c > 0 such

that for all scalars (αi)
n
i=1, we have ∥∥∥∥∥

n∑
i=1

αixi

∥∥∥∥∥ ≥ c

n∑
i=1

|αi|.

Proof. Suppose w.l.o.g. that
∑n

i=1 |αi| = 1 and proceed by contradiction. Now pick a sequence of vectors

α(k) such that ∥∥∥∥∥
n∑

i=1

α
(k)
i xi

∥∥∥∥∥ ≤ 1

k
.

The α(k) are bounded so extract a convergent subsequence by Bolzano-Weierstrass and deduce a contra-

diction by independence and continuity of the norm.

There are a few immediate consequences of the quantitative independence bound for finite-dimensional

normed spaces. The proofs are easy so we omit them.

Corollary 2.1.2.1. Finite-dimensional normed spaces are complete (and therefore closed).
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Corollary 2.1.2.2. All norms on finite-dimensional spaces are equivalent (i.e., there are constants 0 <

c1 < c2 such that c1∥x∥0 ≤ ∥x∥1 ≤ c2∥x∥0 for all x).

Using only the key lemma, we can in fact show the Riesz’s lemma.

Lemma 2.1.3 (Riesz). If Y is a strict closed subspace of a normed space X, then for all θ ∈ (0, 1) there

exists u ∈ X with ∥u∥ = 1 such that

inf
y∈Y

∥u− y∥ ≥ θ.

Riesz’s lemma says that you can find unit vectors far from a closed space in any normed space. The

closedness assumption is important because c0 (the set of sequences with finitely many nonzero terms) is

a non-closed subspace of ℓ2 but there is no unit vector in ℓ2 far from c0.

Proof. Start by picking a nonzero x0 ∈ X \ Y . Then a = infy∈Y ∥x0 − y∥ > 0 since Y is closed. Find

y0 ∈ Y which is pretty close to x0:

a ≤ ∥x0 − y0∥ ≤ a

θ
.

Letting u = (x0 − y0)/∥x0 − y0∥, it’s easy to see that u satisfies the conditions in Riesz’s lemma.

Using Riesz’s lemma, we can prove the following fundamental result.

Theorem 2.1.4 (Compactness of the unit ball). The closed unit ball in a normed space is compact if and

only if the space is finite-dimensional.

Proof. The reverse direction is obvious by Heine-Borel. For the forward direction, one can inductively

extract a sequence of points in the unit ball without any convergent subsequence using Riesz’s lemma

(Lemma 2.1.3).

2.1.2 Linear operators

Definition 2.1.5 (Bounded operator). A linear operator T : X → Y between normed spaces is bounded if

∥T∥ := sup
x ̸=0

∥T (x)∥
∥x∥

< ∞.

Proposition 2.1.5 (Boundedness is equivalent to continuity). A linear operator T : X → Y between

normed spaces is bounded if and only if it is continuous (or even continuous at a point).
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Proof. Assuming boundedness, ∥T (x − y)∥ ≤ c∥x − y∥ implies continuity. For the converse, suppose

T is continuous at x0 ∈ X. Then, for all ϵ > 0, there exists δ > 0 such that ∥x − x0∥ ≤ δ implies

∥T (x) − T (x0)∥ ≤ ϵ. The rest of the proof proceeds by picking a small vector pointing from x0 in the

direction of x, which is a common technique in functional analysis. For any x ̸= 0 ∈ X associate with it

the vector x̃ = x + δx/∥x∥ so that ∥x̃ − x0∥ = δ =⇒ (δ/∥x∥)T (x) = ∥T (x̃) − T (x0)∥ ≤ ϵ. Rearrange to

obtain the result.

The set of bounded linear operators between two normed spaces X and Y (denoted B(X,Y )) is itself

a normed space with the operator norm.

Proposition 2.1.6. B(X,Y ) is a normed space with the operator norm and is complete if Y is complete.

Note that only the output space needs to be complete for B(X,Y ) to be complete.

Proof. It’s obvious that B(X,Y ) is a normed space. If (Tn)
∞
n=1 is Cauchy then (Tnx)

∞
n=1 is Cauchy for all

x and converges in Y to yx. Define Tx = yx and show it’s in B(X,Y ).

2.1.3 Hilbert spaces

Definition 2.1.6 (Hilbert space). A Hilbert space is a complete inner product space.

Easy algebra gives the following lemma.

Lemma 2.1.7 (Parallelogram equation). For all x, y in any inner product space X, we have

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Notably, not all norms come from inner products (e.g., the sup-norm on C([0, 1]) or the p-norm on ℓp

spaces). The proofs all rely on the fact that given a norm in an inner product space, we can recover the

inner product.

Lemma 2.1.8 (Polarization identity). If X is an inner product space over R, then

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2

)
.

If X is an inner product space over C, then

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2 + i(∥x+ iy∥2 − ∥x− iy∥2)

)
.

Interestingly, “rotations” don’t exist in complex inner product spaces.

Proposition 2.1.9. Let Q : X → X be a bounded linear operator.
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• First, ⟨Qx, y⟩ = 0 for all x ∈ X and y ∈ Y if and only if Q = 0.

• In fact, if X is complex and Q : X → X is a bounded linear operator then ⟨Qx, x⟩ = 0 for all x ∈ X

suffices to force Q = 0.

Proof. The first statement is obvious by setting y = Qx. For the second statement, notice that for all

α ∈ C and all x, y ∈ X, we have

0 = ⟨Q(x+ αy), x+ αy⟩

= ⟨Qx, x⟩+ α⟨Qy, x⟩+ α⟨Qx, y⟩+ |α|2⟨Qy, y⟩

= α⟨Qy, x⟩+ α⟨Qx, y⟩.

We conclude by setting α = i and α = 1 and using the first statement.

Now we prove the Cauchy-Schwarz inequality.

Theorem 2.1.10 (Cauchy-Schwarz). For all x, y in an inner product space X, we have

|⟨x, y⟩| ≤ ∥x∥∥y∥,

with equality if and only if x and y are linearly dependent.

Proof. We study 0 ≤ ∥x−αy∥2 for α ∈ C. Standard geometry in Rn endowed with the usual inner product

suggests that putting α = ⟨x,y⟩
∥y∥2 should intuitively minimize the expression on the RHS. Now just expand

and rearrange. The derivation then shows that equality holds if and only if x− αy = 0 or y = 0.

The Cauchy-Schwarz inequality implies the triangle inequality and continuity of the inner product.

One of the most important properties of a Hilbert space is the existence of orthogonal projections, which

we now show.

Theorem 2.1.11 (Projection onto a convex set). If M ⊆ X is convex and complete for any inner product

space X, then for all x there exists a unique y ∈ M such that

δ = inf
ỹ∈M

∥x− ỹ∥ = ∥x− y∥.

Proof. Pick yn ∈ M such that ∥x− yn∥ ↓ δ. Then if vn := yn − x, the parallelogram equality gives

∥yn − ym∥2 = 2∥vn∥2 + 2∥vm∥2 − ∥vn + vm∥2.

The first two terms go to δ, and convexity of M gives

∥vn + vm∥ = ∥yn + ym − 2x∥ = 2

∥∥∥∥yn + ym
2

− x

∥∥∥∥ ≥ 2δ.

So (yn)
∞
n=1 is Cauchy, and completeness of M gives the result. Another application of the parallelogram

equality shows that the projection is unique.
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Theorem 2.1.11 leads to the following theorem.

Theorem 2.1.12 (Orthogonal decomposition). If Y is a closed subspace of a Hilbert space X then X =

Y ⊕ Y ⊥ (everything in X is a unique sum of something in Y and something in Y ⊥).

2.1.4 Orthogonality and Fourier series

Suppose we have an orthonormal set (en)
∞
n=1 in an inner product space X.

Theorem 2.1.13 (Bessel’s inequality). For all x ∈ X, we have

∞∑
n=1

|⟨x, en⟩|2 ≤ ∥x∥2.

Proof. Let y =
∑n

k=1⟨x, ek⟩ek and let z = x − y so that ⟨z, en⟩ = 0 for all n. So ∥x∥2 = ∥y∥2 + ∥z∥2 and

the result follows from ∥z∥ ≥ 0.

The terms ⟨x, en⟩ are called the Fourier coefficients of x.

Theorem 2.1.14 (Convergence of orthonormal series). The series

∞∑
n=1

αnen

converges if and only if

∞∑
n=1

|αn|2 < ∞.

Also if the limit is x then αn = ⟨x, en⟩ are the Fourier coefficients.

Proof. Use the Pythagorean identity
∥∥∥∑N

n=1 αnen

∥∥∥2 =∑N
n=1|αn|2 to show the first statement. The second

statement follows from continuity of the inner product, since the partial sums are assumed to converge to

x.

Remarkably, there can only be countably many non-zero Fourier coefficients, no matter how large the

orthonormal set is.

Theorem 2.1.15 (Riesz-Fischer). If (ei)i∈I is an orthonormal set in a Hilbert space X, then for all x ∈ X

the set {i : ⟨x, ei⟩ ≠ 0} is countable.

Proof. By Bessel’s inequality, the set {i : |⟨x, ei⟩| ≥ 1/k} is finite for all k ∈ N.

A Schauder basis may not be spanning, so we define the following generalization of a spanning set.
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Definition 2.1.7 (Total set). A total set M ⊆ X has span(M) = X.

All nontrivial Hilbert spaces have total orthonormal sets by Gram-Schmidt and Zorn’s lemma (Ax-

iom A.1.1). All total orthonormal sets have the same cardinality, which is called the Hilbert dimension of

X. The proof is set-theoretic and not difficult, so we omit it. We can also equivalently characterize total

sets in Hilbert space.

Proposition 2.1.16. If X is a Hilbert space, then M is total if and only if x ⊥ M implies x = 0.

Proof. The forward direction is true in any inner product space by continuity of the inner product. The

reverse direction follows from the orthogonal decomposition X = span(M)⊕ span(M)
⊥
.

We have another characterization of totality for orthonormal sets.

Theorem 2.1.17 (Parseval). An orthonormal set M in a Hilbert space X is total if and only if for all

x ∈ X, we have

∥x∥2 =
∑
m∈M

|⟨x,m⟩|2.

This is called the Parseval relation.

Proof. For the reverse direction, there exists a nonzero x ⊥ M by Proposition 2.1.16, so x cannot satisfy

the Parseval relation. For the forward direction, we can define y =
∑

m∈M |⟨x,m⟩|2m and show that

x− y ⊥ M . Then x− y = 0 by Proposition 2.1.16.

Orthonormal sets in a separable Hilbert space behave nicely.

Theorem 2.1.18. If X is a separable Hilbert space then every orthonormal set is countable. Also, if there

is a total orthonormal set then X is separable.

Proof. For the first statement, let (en)
∞
n=1 be an orthonormal set. Since ∥ei − ej∥2 = 2 for all i ̸= j,

neighborhoods of size
√
2/2 around the ei are disjoint, but we need a countable dense set. The second

statement follows from picking rational coefficients.

Finally, we have the following result about isomorphism, which is analogous to the usual one for finite-

dimensional spaces.

Theorem 2.1.19. Hilbert spaces are isomorphic if and only if they have the same Hilbert dimension.

Proof. The forward direction is obvious and the reverse direction follows from letting T (x) =
∑

k∈K⟨x, ek⟩fk
where (ek)k∈K and (fk)k∈K are orthonormal bases for the two Hilbert spaces respectively.
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2.2 The dual space and the Riesz-Fréchet representation theorem

We call the space X∗ := B(X,F) the dual space of X where F is R or C; Proposition 2.1.6 gives us some

intuition about the dual space.

Proposition 2.2.1. The dual space X∗ is always a Banach space.

Proof. R and C are complete, so use Proposition 2.1.6 (the space of bounded operators between X and Y

is complete whenever Y is complete).

Now, we have the Riesz-Fréchet representation theorem.

Theorem 2.2.2 (Riesz-Fréchet representation). If X is a Hilbert space, then for all f ∈ X∗ there exists a

unique y ∈ X such that

f(x) = ⟨x, y⟩

for all x ∈ X and ∥y∥ = ∥f∥.

The Riesz-Fréchet representation theorem isn’t surprising; R or C are one-dimensional Hilbert spaces

over themselves, so f has to squash everything into one dimension. The only way to do that is by taking

the inner product with a fixed vector.

Proof. The proof is trivial when f = 0 so assume f ̸= 0. Now we want to show ker(f)⊥ is one-dimensional.

For any nonzero z1, z2 ∈ ker(f)⊥, we have

f

(
z1 −

f(z1)

f(z2)
z2

)
= 0

So z1− f(z1)
f(z2)

z2 is in ker(f)∩ker(f)⊥, which shows that z1 and z2 are dependent. Now pick any z0 ∈ ker(f)⊥

with norm 1 and define y = f(z0) z0 so that f(x) = ⟨x, y⟩ for all x. Essentially, we are projecting onto

span(z0) and applying f . Uniqueness is immediate since 0 = ⟨y1−y2, y1⟩−⟨y1−y2, y2⟩ = ∥y1−y2∥ implies

y1 = y2 for alternatives y1 and y2. Finally, we have ∥y∥2 = f(y) ≤ ∥f∥∥y∥ so ∥y∥ ≤ ∥f∥, and the reverse

inequality follows from Cauchy-Schwarz.

2.3 The four pillars of functional analysis

In this section, we prove several important theorems in functional analysis, which are often called the

“four pillars” of the subject. The Hahn-Banach theorem works in general normed spaces, but the other

three theorems are specific to Banach spaces. The latter three will follow mostly from the Baire category

theorem (Theorem A.2.1).
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2.3.1 The Hahn-Banach theorem

The Hahn-Banach theorem allows us to extend bounded linear functionals from subspaces of any vector

space to the entire space, and shows that the dual contains a lot of things. We begin with a related

definition.

Definition 2.3.1 (Sublinear functional). A sublinear functional on a vector space X is a function p : X →

R such that

p(αx) = αp(x)

for α ≥ 0 and

p(x+ y) ≤ p(x) + p(y)

for all x, y ∈ X.

An important example of a sublinear functional is the norm on a normed space.

Theorem 2.3.1 (Hahn-Banach). Suppose Z is a subspace of a vector space X and p : X → R is a sublinear

functional. If f : Z → R is a linear functional such that f(x) ≤ p(x) for all x ∈ Z, then there exists a

linear functional f̃ : X → R such that f̃ |Z = f and f̃(x) ≤ p(x) for all x ∈ X.

Proof. Apply Zorn’s lemma with f1 ≤ f2 if f2 extends f1 and M = {g : g linear, g extends f, g(x) ≤ p(x)}.

Now we have the existence of a maximal element f̃ : Y → R. Suppose for a contradiction that f̃ isn’t

defined at some z ∈ X. Then, define g(y + αz) = f̃(y) + αf̃(z) for all y ∈ Y and α ∈ R; we need to pick

f̃(z) such that g(x) ≤ p(x). Rephrasing: for all y ∈ Y and α > 0, we need

f̃(y) + αf̃(z) ≤ p(y + αz),

f̃(y)− αf̃(z) ≤ p(y − αz).

Solving for the constraint on f̃(z) and setting y 7→ y/α, we find:

sup
y∈Y

{f(y)− p(y − z)} ≤ f̃(z) ≤ inf
y∈Y

{p(y + z)− f(y)}.

As long as the left-hand side is not larger than the right-hand side, we will have a valid choice for f̃(z).

But we have

f̃(y2)− p(y2 − z) ≤ p(y1 + z)− f(y1) ⇐⇒ f̃(y1 + y2) ≤ p(y1 + z) + p(y2 − z),

and the latter condition is implies by sublinearity of p.
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We can slightly generalize the Hahn-Banach theorem to complex vector spaces.

Theorem 2.3.2 (Generalized Hahn-Banach). Suppose Z is a subspace of a vector space X and p : X → R

is a subadditive functional; for all x, y ∈ X and α ∈ C, we have

p(αx) = |α|p(x)

and

p(x+ y) ≤ p(x) + p(y).

If f : Z → C is a linear functional such that |f(x)| ≤ p(x) for all x ∈ Z, then there exists a linear functional

f̃ : X → C such that f̃ |Z = f and |f̃(x)| ≤ p(x) for all x ∈ X.

Proof. Use Hahn-Banach on the real and imaginary parts of f separately and set f̃(x) = f̃ℜ(x)−if̃ℑ(x).

Note that Hahn-Banach is a generalization of the Riesz-Fréchet representation theorem (Theorem 2.2.2)

to arbitrary vector spaces; if Z is a closed subspace of a Hilbert space X then the Riesz-Fréchet represen-

tation gives a linear extension f̃(x) = ⟨x, z⟩ for some z ∈ X. We now state the most important corollary

of the Hahn-Banach theorem, which shows that there are lots of bounded linear functionals on a normed

space.

Corollary 2.3.2.1. If X is a normed space and x0 ∈ X is nonzero, then there exists a bounded linear

functional f̃ : X → F such that f̃(x0) = ∥x0∥ and ∥f̃∥ = 1.

Proof. Apply the Hahn-Banach theorem with Z = span(x0) and f(z) = ∥z∥ defined from Z to F.

This implies that the set of bounded linear functionals separates points in a normed space, and X∗

therefore has a rich structure. This becomes useful later in the characterization of weak convergence and

the adjoint operator. For applications of Hahn-Banach, see Sections 2.5 and 2.6.

2.3.2 The uniform boundedness principle (Banach-Steinhaus)

The uniform boundedness principle allows us to upgrade pointwise convergence of operators to uniform

convergence, and follows from the Baire category theorem (Theorem A.2.1).

Theorem 2.3.3 (Banach-Steinhaus). If X is a Banach space and Y is a normed space, then for all

Tn : X → Y such that

sup
n∈N

∥Tnx∥ < ∞
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for all x ∈ X, we have

sup
n∈N

∥Tn∥ < ∞.

This is sometimes called the uniform boundedness principle.

Proof. Define Ak = {x ∈ X : Tx ≤ k} so that Ak is closed and X =
⋃∞

k=1Ak. By the Baire category

theorem (since X is complete), there exists Ak0 containing a ball B(x0, r). We are almost done, since

B(x0, r)−x0 contains vectors at a fixed length in all directions and ∥Tx∥ is uniformly bounded in the ball.

To formalize this argument, for any x ∈ X we can set z = x0 + γx where γ = r/(2∥x∥) so that

z ∈ B(x0, r). So then we have the inequality

∥Tnx∥ =

∥∥∥∥1γ Tn(z − x0)

∥∥∥∥ ≤ 1

γ
(∥Tnz∥+ ∥Tnx0∥) ≤

2k0
γ

=
4k0
r

∥x∥.

This estimate shows that ∥Tn∥ is uniformly bounded by 4k0/r, and we are done.

A common use of the uniform boundedness principle is to construct operators which are pointwise

bounded but not uniformly bounded, thereby showing that a space X is not complete. The uniform

boundedness principle can also reveal interesting structure in many spaces, as we show in the following

example.

Example 2.3.1 (Most continuous functions are nowhere differentiable). There are lots of famous examples

of continuous and nowhere differentiable functions (sample paths of Brownian motion, the Weierstrass

function, etc.) but the uniform boundedness principle can be used to show that most continuous functions

are actually nowhere differentiable. Consider X = C([0, 1]) endowed with the supremum norm and for

each x ∈ [0, 1] and n ∈ N we define the linear functional:

Tn,x(f) =

{
n
∣∣f (x+ 1

n

)
− f(x)

∣∣ x+ 1
n ≤ 1

n
∣∣f(x)− f

(
x− 1

n

)∣∣ x+ 1
n > 1.

Essentially, Tn,x are the difference quotients with ∆x = 1/n; if f is differentiable at x, then supn |Tn,x(f)| <

∞. Formally, define Dx = {f ∈ X : f is differentiable at x} so that Tn,x is pointwise bounded on Dx. It is

easy to see that supn ∥Tn,x∥ = ∞ by constructing a sequence of functions that rise more and more sharply.

In particular, by a slight generalization of the uniform boundedness principle to any nonmeager subset

of a Banach space, we deduce that Dx must be meager. The set of anywhere differentiable functions is

exactly the set of functions which are differentiable at any rational, so we deduce that the set of anywhere

differentiable functions is meager in C([0, 1]).

For further example applications of the uniform boundedness principle, see Section 2.7.
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2.3.3 The open mapping theorem

The open mapping theorem says that a surjective bounded linear operator between Banach spaces sends

open sets to open sets. In particular, a bijective bounded linear operator between Banach spaces has a

bounded inverse.

Definition 2.3.2 (Open mapping). T : X → Y between metric spaces is an open mapping if T (U) is open

in Y whenever U is open in X.

Theorem 2.3.4 (Open mapping). If X and Y are Banach spaces and T : X → Y is a surjective bounded

linear operator, then T is an open mapping.

Proof. Let Br = B(0, r) ⊆ X. It will suffice to show that T (B1) contains an open ball around 0 in Y . We

know that

Y =
∞⋃
n=1

T (Bn),

so the Baire category theorem implies that we can fit a ball in T (Bn) for some n. Shrinking this ball by a

factor of n, we can find a ball B(y0, r0) ⊆ T (B1). It is easy to show that T (B1)− y0 ⊆ T (B2), so that we

can center the balls. Our goal is now to show that Br/2 ⊆ T (B1), thereby removing the closure.

Dilating the previous result, there exists r > 0 such that as long as ∥y∥ < r/2n, then y ∈ T (B2−n). As

long as ∥y∥ < r/2, we can find x1 ∈ B1/2 such that ∥y−Tx1∥ < r/4, and inductively, xn ∈ B2−n such that

∥y −
∑n

k=1 Txk∥ < r/2n+1. Since X is complete,
∑∞

k=1 xk converges to some x ∈ X. Now ∥x∥ < 1 and

y = Tx, so the result follows.

The open mapping theorem immediately has a useful corollary, called the bounded inverse theorem.

Corollary 2.3.4.1 (Bounded inverse). If X and Y are Banach spaces and T : X → Y is a bijective

bounded linear operator, then T−1 is bounded.

The bounded inverse theorem is used to show that solutions to linear equations in Banach spaces are

continuous with respect to the desired output. For instance, if we are trying to solve Tx = y for x and T is

a bijective bounded linear operator between Banach spaces, then the solution x = T−1y is continuous in y;

as an example, T might be a differential operator. Even if the map is not bijective, we have the following

corollary.

Corollary 2.3.4.2. Suppose X, Y , and T are as in the open mapping theorem. Then there exists a

constant c > 0 such that for any y ∈ Y there exists x ∈ X with Tx = y and ∥x∥ ≤ c∥y∥.
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Proof. By the open mapping theorem (Theorem 2.3.4), T (B1) contains an open ball B(0, r). For any y ∈ Y ,

there exists x ∈ B1 with Tx = ry/∥y∥. In particular, we have T (x∥y∥/r) = y with ∥x∥y∥/r∥ ≤ ∥y∥/r. Let

c = 1/r.

So the solution to a linear equation between Banach spaces is always bounded in norm by the desired

output, as long as the linear map is surjective, which has important implications for numerical stability.

If y has a small measurement error δ, then the solution x will have an error of at most cδ, where c didn’t

depend on y.

2.3.4 The closed graph theorem

The closed graph theorem gives a sufficient condition for a linear operator between Banach spaces to be

bounded, and follows from the open mapping theorem.

Definition 2.3.3 (Closed operator). A linear operator T : dom(T ) → Y between normed spaces is closed

if the graph of T is closed in X × Y under the norm ∥(x, y)∥ = ∥x∥+ ∥y∥. Here, the graph of T is the set

G(T ) = {(x, Tx) : x ∈ dom(T )}.

We can characterize closed operators in another equivalent way.

Proposition 2.3.5. A linear operator T : dom(T ) → Y between Banach spaces is closed if and only if for

all sequences (xn)
∞
n=1 in dom(T ) such that xn → x and Txn → y, we have x ∈ dom(T ) and Tx = y.

Example 2.3.2 (Differentiation operator). The differentiation operator from C1([0, 1]) to C([0, 1]) is closed

but not bounded.

Now, we state the closed graph theorem, which gives sufficient conditions for a linear operator between

Banach spaces to be bounded.

Theorem 2.3.6 (Closed graph). If X and Y are Banach spaces and T : dom(T ) → Y is a closed linear

operator, then T is bounded.

Proof. X × Y is complete, so consider the mapping p(x, Tx) = x from G(T ) to dom(T). This mapping

is bounded and bijective, so by the open mapping theorem, p−1 is bounded (since G(T ) and dom(T ) are

complete). In particular, this shows that T is bounded.

We give sufficient conditions for the converse of the closed graph theorem to hold.

Proposition 2.3.7. If T : dom(T ) → Y is a linear operator between any normed spaces then if dom(T )

is complete and T is bounded, then T is closed. Also, if T is closed and Y is complete, then dom(T ) is

closed.
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Proof. The first statement is immediate from continuity of T . For the second statement, take a sequence

xn → x with xn ∈ dom(T ). Then, we have

∥T (xn − xm)∥ ≤ ∥T∥∥xn − xm∥ → 0,

so (Txn)
∞
n=1 is Cauchy. Now Txn → y for some y ∈ Y by completeness of Y and y = Tx by closedness of

T .

The closed graph theorem is used to show that an operator is bounded, since in many cases closedness

easier to verify directly than boundedness.

2.4 Hilbert adjoint operators

First, we slightly generalize the Riesz-Fréchet representation theorem to sesquilinear forms.

Definition 2.4.1 (Sesquilinear form). A sesquilinear form is h : X × Y → F which is linear in the first

coordinate and conjugate linear in the second coordinate (where X and Y are vector fields over F). Define

the norm of h as

∥h∥ = sup
x ̸=0
y ̸=0

|h(x, y)|
∥x∥∥y∥

.

Theorem 2.4.1 (Generalized Riesz-Fréchet representation). If X and Y are Hilbert spaces and h is a

bounded sesquilinear form on X × Y then we can write

h(x, y) = ⟨Sx, y⟩,

where S : X → X is a unique linear operator with ∥S∥ = ∥h∥.

Proof. h(x, y) is a bounded linear functional in y for fixed x, so the Riesz-Fréchet representation theorem

gives h(x, y) = ⟨y, z⟩ for some z ∈ Y ; this means that h(x, y) = ⟨z, y⟩. Define Sx = z for all x; it’s easy to

show S is linear and unique. By Cauchy-Schwarz, we have

∥h∥ ≤ sup
∥x∥=1

∥Sx∥
∥x∥

= ∥S∥.

Similarly, we get the reverse inequality by

∥h∥ ≥ sup
x ̸=0
y ̸=0

|h(x, y)|
∥x∥∥y∥

= sup
x̸=0
Sx̸=0

|⟨Sx, Sx⟩|
∥x∥∥Sx∥

= ∥S∥.

One main point of this generalization is to prove that the Hilbert adjoint operator exists.
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Definition 2.4.2 (Hilbert adjoint). If T : X → Y is bounded linear where X and Y are Hilbert spaces,

then the Hilbert adjoint of T is the unique operator T ∗ : Y → X such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩

for all x ∈ X and y ∈ Y .

We now verify that the Hilbert adjoint is well-defined.

Theorem 2.4.2. T ∗ exists, is unique, and ∥T ∗∥ = ∥T∥.

Proof. The function h(x, y) = ⟨y, Tx⟩ is a bounded sesquilinear form on X × Y , so use the generalized

Riesz-Fréchet representation theorem (Theorem 2.4.1).

The adjoint operator is a generalization of the conjugate transpose for finite-dimensional spaces. If

⟨x, y⟩ = x⊤y then ⟨Bx, y⟩ = (Bx)⊤y = x⊤B∗y, so B∗ = B
⊤
. The properties of the adjoint operator all

follow immediately from the definition, except perhaps for the following.

Proposition 2.4.3. The adjoint satisfies ∥T ∗T∥ = ∥T∥2.

Proof. We immediately have ∥T ∗T∥ ≤ ∥T ∗∥∥T∥ = ∥T∥2. To show the reverse inequality, we have for all

x ∈ X that

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩ ≤ ∥x∥∥T ∗Tx∥.

Taking the supremum over all x with ∥x∥ = 1 gives the result.

We now have the following important definitions related to the adjoint operator.

Definition 2.4.3 (Self-adjoint operator). An operator T : X → X is self-adjoint or Hermitian if T = T ∗.

Definition 2.4.4 (Unitary operator). An operator T : X → X is unitary if T ∗ = T−1.

Self-adjoint operators are a generalization of conjugate symmetric matrices, and unitary operators are

a generalization of orthogonal matrices. The adjoint operator has a few nice properties.

Proposition 2.4.4. If T is self-adjoint then ⟨Tx, x⟩ is real for all x. Also, the reverse implication is true

in complex Hilbert spaces.

Proof. The first statement is obvious and the second statement follows from Proposition 2.1.9.

Proposition 2.4.5. The limit of bounded self-adjoint linear operators is bounded and self-adjoint.
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Proof. We have by the triangle inequality

∥T − T ∗∥ ≤ ∥T − Tn∥+ ∥Tn − T ∗
n∥+ ∥T ∗

n − T ∗∥ = 2∥T − Tn∥ → 0.

Unitary operators behave nicely in Hilbert spaces too.

Proposition 2.4.6. Unitary operators are isometries (∥Ux∥ = ∥x∥), and a bounded linear operator on a

complex Hilbert space is unitary if and only if it is isometric and surjective.

Proof. The first statement and the forward implication of the second statement are easy to show. For

the reverse implication, isometries are injective so T is bijective. Now ⟨x, x⟩ = ⟨T ∗Tx, x⟩ implies that

⟨(T ∗T − I)x, x⟩ = 0 for all x; conclude by Proposition 2.1.9 that T ∗T = I.

2.5 The adjoint operator

Suppose we have a linear functional g on Y . Then, if T ∈ B(X,Y ) then define f(x) = g(Tx) for all x ∈ X.

Definition 2.5.1 (Adjoint operator). The adjoint operator T× : Y ∗ → X∗ is defined by T×(g) = g ◦T for

all g ∈ Y ∗.

Here, T : X → Y but T× : Y ∗ → X∗.

Proposition 2.5.1. The adjoint operator is linear with ∥T×∥ = ∥T∥.

Proof. Linearity is clear and ∥T×g∥ ≤ ∥T∥∥g∥ implies that ∥T×∥ ≤ ∥T∥. Now, for all x0 ∈ X, Corol-

lary 2.3.2.1 gives g0 ∈ Y ∗ such that g0(Tx0) = ∥Tx0∥ and ∥g0∥ = 1. So, we obtain

∥Tx0∥ = g0(Tx0) = T×(g0)(x0) ≤ ∥T×∥∥g0∥∥x0∥ = ∥T×∥∥x0∥.

This implies that ∥T∥ ≤ ∥T×∥ and the result follows.

Notice that for the adjoint operator to have the a large enough norm, we needed the dual space to be

large enough. Also, if T has matrix TE , then the adjoint operator has matrix T⊤
E .

2.6 Reflexive spaces and separability

Proposition 2.6.1. The canonical mapping x 7→ gx where gx(f) = f(x) is an isomorphism from X to a

subset of X∗∗ with ∥gx∥ = ∥x∥.

Proof. The proof is immediate from definitions.

Definition 2.6.1 (Reflexive space). A normed space X is reflexive if the canonical mapping is surjective.
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Note that if X is reflexive then X is complete because the double dual is complete. Furthermore, every

Hilbert space is reflexive due to the Riesz-Fréchet representation theorem. Now, we would like to show

that if X∗ is separable in a normed space then X is separable.

Lemma 2.6.2. Suppose that Y is a proper closed subspace of a normed space X and fix x0 ∈ X \ Y with

δ := dist(x0, Y ). Then there exists f̃ ∈ X∗ such that f̃(x0) = δ, and f̃(y) = 0 for all y ∈ Y , and ∥f̃∥ = 1.

Proof. Apply the Hahn-Banach theorem (Theorem 2.3.2).

Theorem 2.6.3. If X∗ is separable then X is separable for any normed space X.

Proof. The unit sphere U∗ = {f : ∥f∥ = 1} ⊆ X∗ is closed so it contains a countable dense subset (fn)
∞
n=1.

Find (xn)
∞
n=1 such that |fn(xn)| ≥ 1/2 since ∥fn∥ = 1. Let Y = span({xn}∞n=1). If Y ̸= X, then by

Lemma 2.6.2 there exists f̃ ∈ X∗ such that f̃(y) = 0 for all y ∈ Y and ∥f∥ = 1. In particular, we have

(since f̃(xn) = 0 for all n) that

1

2
≤ |fn(xn)| ≤ |fn(xn)− f̃(xn)| ≤ ∥fn − f̃∥∥xn∥ = ∥fn − f̃∥.

This contradicts the density of (fn)
∞
n=1 in U∗, so Y = X. Now pick rational coefficients in the span defining

Y and conclude.

2.7 Weak convergence and weak-* convergence

Definition 2.7.1 (Weak convergence). A sequence (xn)
∞
n=1 converges weakly to x (written xn

w−→ x) if

f(xn) → f(x) for all f ∈ X∗.

Weak convergence behaves like strong convergence in the following ways.

Proposition 2.7.1. If xn
w−→ x then all subsequences converge weakly and the limit is unique. Also,

(∥xn∥)∞n=1 is bounded.

Proof. The first two statements are easy to show. For the third statement, consider the canonical mapping

gn(f) = f(xn). Since (f(xn))
∞
n=1 converges, it is bounded for all f ∈ X∗. Because X∗ is complete,

the uniform boundedness principle (Theorem 2.3.3) implies that (∥gn∥)∞n=1 is bounded. Conclude using

∥gn∥ = ∥xn∥.

Weak convergence is a less strict form of strong convergence when dim(X) = ∞.

Proposition 2.7.2. Strong convergence implies weak convergence, and the converse is true when dim(X) <

∞.
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Proof. To show strong convergence implies weak convergence, we know that |f(xn)−f(x)| ≤ ∥f∥∥xn−x∥ →

0. To show the converse, suppose that (ei)
n
i=1 is a basis for X and use the canonical basis for the dual (the

one composed of functionals that send ei to 1 and all other vectors to 0).

We can easily write down an equivalent characterization of weak convergence using a total subset of

the dual (a set M ⊆ X∗ such that span(M) = X∗).

Proposition 2.7.3. Weak convergence xn
w−→ x is equivalent to (∥xn∥)∞n=1 being bounded and f(xn) →

f(x) for all f in a total set M ⊆ X∗.

Proof. The forward implication is obvious. For the reverse implication, pick any f ∈ X∗ and (fj)
∞
j=1 in

span(M) such that fj → f . Then use a 3ϵ argument, since f(xn) is close to fj(xn), fj(xn) is close to fj(x),

and fj(x) is close to f(x). We needed boundedness of (∥xn∥)∞n=1 to ensure that fj(xn) is close to fj(x).

Weak convergence intuitively captures many forms of convergence not captured by strong convergence;

for instance, the sequence (en)
∞
n=1 in ℓ2 converges weakly to 0 but not strongly. We can also define notions

of convergence for operators.

Definition 2.7.2 (Uniform operator convergence). A sequence of operators (Tn)
∞
n=1 converges uniformly

to T if ∥Tn − T∥ → 0.

Definition 2.7.3 (Strong operator convergence). A sequence of operators (Tn)
∞
n=1 is strongly operator

convergent to T if (Tnx)
∞
n=1 converges for all x ∈ X.

Definition 2.7.4 (Weak operator convergence). A sequence of operators (Tn)
∞
n=1 converges weakly to T

if (Tnx)
∞
n=1 converges weakly for all x ∈ X.

For example, Tn = (set first n coordinates to 0) in ℓ2 converges strongly but not uniformly to 0. Simi-

larly, Tn = (shift forward by n) in ℓ2 converges weakly but not strongly to 0.

Note that for bounded linear functionals, strong operator convergence is equivalent to weak operator

convergence. In this case, we call uniform operator convergence strong convergence and we call weak

operator convergence weak-* convergence.

Example 2.7.1 (Convergence in distribution). Convergence of random variables in distribution is an

example of weak-* convergence. For a compact set X, the dual of C(X) is the space of regular signed

Borel measures on X (sometimes denoted M(X)); this is called the Riesz-Markov representation theorem.

The set of probability measures P(X) is a subset of M(X), so weak convergence of probability measures

exactly means that E[f(Xn)] → E[f(X)] for all f ∈ C(X) = Cb(X). Of course, this is the characterization

of convergence in distribution given by the portmanteau lemma. Similar analysis works over unbounded
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sets X by considering the space of continuous functions vanishing at infinity (called C0(X)), whose dual

is the space of Radon measures on R.

Now, strong operator convergence implies that the limit operator is bounded, assuming that the input

comes from a Banach space.

Lemma 2.7.4. If Tn → T is strongly operator convergent then T ∈ B(X,Y ) as long as X is a Banach

space.

Proof. Linearity is immediate, and boundedness follows from the uniform boundedness principle (Theo-

rem 2.3.3).

We have the following characterization of strong operator convergence.

Proposition 2.7.5. A sequence of operators (Tn)
∞
n=1 converges strongly to T if and only if (∥Tn∥)∞n=1 is

bounded and (Tnx)
∞
n=1 is Cauchy for all x ∈ M , where M ⊆ X is total.

Proof. The proof is more or less identical to the proof of Proposition 2.7.3.

Since strong operator convergence is equivalent to weak-* convergence for bounded operators, the same

characterization holds for weak-* convergence. We now prove the Banach-Alaoglu theorem, which gives a

way to show weak-* convergence.

Theorem 2.7.6 (Banach-Alaoglu). If X is a normed space and (fn)
∞
n=1 is a sequence in X∗ with ∥fn∥ ≤ 1

for all n ∈ N , then there exists a subsequence such that (fnk
)∞k=1 converges in weak-* to some f ∈ X∗.

This theorem can be stated more generally in the context of topological vector spaces: the closed unit

ball of the dual of a normed space is compact in the weak-* topology. However, we state the result here

(equivalently) in terms of subsequential weak-* convergence.

Proof. The trick of this proof is to embed our space into a compact product space, such that convergence

in the product space automatically gives our desired convergence. We associate with each point x ∈ X the

compact set Kx = {|z| ≤ ∥x∥} ⊆ R. By Tychonoff’s theorem (which states that the product of compact

sets is always compact), the product
∏

x∈X Kx is compact. Define the map Φ on X∗ by Φ(f) = (f(x))x∈X

so that Φ(f) ∈
∏

x∈X Kx when ∥f∥ ≤ 1. Extract a convergent subsequence Φ(fnk
) → Φ(f) in the product

topology on
∏

x∈X Kx. Now, for any x ∈ X, we have fnk
(x) → f(x) so that fnk

w−→ f as desired.
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Chapter 3

Convex analysis

In this chapter, we discuss many classical concepts in convex analysis which appear in many other areas

of applied math. We will assume that the reader knows some basic definitions, and most of the material

will come from Convex Analysis by R. Tyrrell Rockafellar.

3.1 Convex sets and functions

Most of this section is intended as review.

Proposition 3.1.1. Intersections of convex sets are convex.

Definition 3.1.1 (Epigraph). If f : Rn → [−∞,∞] is a function, then the epigraph of f is the set

epi(f) = {(x, µ) ∈ Rn × R : f(x) ≤ µ}.

Essentially, if you draw the graph of f , the epigraph is the set of points above the graph (including the

graph itself).

Definition 3.1.2 (Convex function). A function f is convex if its epigraph is a convex set. If f > −∞

then this is equivalent to Jensen’s inequality.

Proposition 3.1.2. If f is convex then the sublevel sets {x : f(x) ≤ α} are convex for all α ∈ R. So are

the strict sublevel sets {x : f(x) < α}.

Proof. The α-sublevel set is the intersection of epi(f) with the hyperplane µ = α (restricted to the first

coordinate), and the convexity of the strict sublevel sets follows from Jensen’s inequality.

Proposition 3.1.3. If f > −∞ and φ > −∞ are convex with φ nondecreasing and φ(∞) = ∞, then φ◦f

is convex.
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The proof is easy so we omit it. For example, this implies that ef(x) is convex if f > 0 is convex.

Proposition 3.1.4. f(x) = inf{µ : (x, µ) ∈ K} is convex if K is convex.

Again, we omit the proof. We know that we can associate a convex set to every convex function by

epi(f), but it now follows that we can almost treat any convex set like epi(g) for some convex function g.

3.2 Lower semi-continuous functions

To motivate this section, notice that convex functions need not have consistent limiting behavior. For

example, take the function f(x) = x2 + 1x ̸=0 with dom(f) = [0,∞), which is convex. One could try to

computationally optimize this function and obtain x∗ = 0 as an output, but this is totally meaningless.

In some sense, this is the only problem that convex functions can have. They can have points where they

are unexpectedly high, but they can’t have points where they are unexpectedly low. We need to impose

some sort of continuity condition to ensure that the function behaves as expected, and the right condition

is lower semi-continuity.

Definition 3.2.1 (Lower semi-continuity). A function f is lower semi-continuous (l.s.c.) if f(x) ≤

lim infy→x f(y) for all x ∈ dom(f).

In particular, if we tried to minimize the function only using surrounding values, there would not be

an unwelcome surprise at the limit no matter how we approach. We can equivalently characterize lower

semi-continuity as follows, highlighting the deep connection between lower semi-continuity and convexity.

Proposition 3.2.1. A function f is l.s.c. if and only if the sublevel sets {x : f(x) ≤ α} is closed for all

α ∈ R. Also, f is l.s.c. if and only if epi(f) is closed.

The proof is easy so we omit it. We will use this characterization later.

Proposition 3.2.2. If f takes values in [0,∞] and is l.s.c. then it can be written as the pointwise supremum

of Lipschitz functions.

Note that the proof can be adapted so that this holds in any metric space.

Proof. For λ ≥ 0, define fλ(x) = inf{f(y) + λ∥x − y∥2 : y ∈ Rn}; this is called the Moreau-Yosida trick.

Here, fλ is the infimal convolution of f with λ∥·∥2. It is easy to check that fλ is λ-Lipschitz and fλ ↑ f

pointwise.
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3.3 Separation theorems

In this section, we cover the supporting hyperplane theorem and the separating hyperplane theorem, which

are fundamental results in convex analysis.

Definition 3.3.1 (Gauge function). The gauge function of a set C is the function γC(x) = inf{λ > 0 :

x ∈ λC}, and is convex if C is convex. The gauge function is sometimes called the Minkowski functional

of C.

Proposition 3.3.1. The gauge function γC is a sublinear functional (as defined in Definition 2.3.1) when

C is convex.

Proof. Positive homogeneity is clear. For subadditivity, fix any α > γC(x) and β > γC(y) so that x ∈ αC

and y ∈ βC. Then x+ y ∈ (α+ β)C so that γC(x+ y) ≤ α+ β. Take an infimum over all such α, β to get

the result.

Lemma 3.3.2 (Separating a point from a set). If C is a nonempty convex set then for all x0 ̸∈ C, there

exists a nonzero w ∈ Rn such that ⟨w, x⟩ ≤ ⟨w, x0⟩ for all x ∈ C.

Proof. Suppose without loss of generality that 0 ∈ C. Define L = span({x0}) and define a linear functional

on L by f(αx0) = α for α ∈ R. Now, we see that f(v) ≤ γC(v) for all v ∈ L since γC(αx0) ≥ α = f(αx0)

for α > 0 and f(αx0) ≤ 0 ≤ γC(αx0) for α ≤ 0.

By the Hahn-Banach theorem (Theorem 2.3.2), we can extend f to a linear functional f̃ on all of Rn

satisfying f̃(v) ≤ γC(v) for all v ∈ Rn. By the Riesz-Fréchet representation theorem (Theorem 2.2.2),

there exists a nonzero vector w ∈ Rn such that f̃(x) = ⟨w, x⟩ for all x ∈ Rn. For any x ∈ C, we have

⟨w, x⟩ = f̃(x) ≤ γC(x) ≤ 1 = f̃(x0).

Note that the Hahn-Banach theorem wasn’t strictly needed in Rn, but the point is that the same proof

works in arbitrary normed spaces. From this lemma, we derive the separating hyperplane theorem.

Theorem 3.3.3 (Separating hyperplane). If A and B are nonempty disjoint convex sets, then there exists

a nonzero w ∈ Rn and α ∈ R such that supx∈A⟨w, x⟩ ≤ α ≤ infx∈B⟨w, x⟩.

Proof. Let C = A − B = {x − y : x ∈ A, y ∈ B}. Then C is convex and contains 0, so by Lemma 3.3.2

there exists a nonzero w such that ⟨w, x⟩ ≤ ⟨w, 0⟩ = 0 for all x ∈ C. This implies that ⟨w, a − b⟩ ≤ 0 for

all a ∈ A and b ∈ B, so ⟨w, a⟩ ≤ ⟨w, b⟩ for all a ∈ A and b ∈ B.

Sometimes, the separating hyperplane theorem is also called the Hahn-Banach separation theorem.

Now, we are ready to show the supporting hyperplane theorem.
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Theorem 3.3.4 (Supporting hyperplane). If C is a nonempty convex set and x0 is a boundary point of

C, then there exists a nonzero w ∈ Rn such that ⟨w, x⟩ ≤ ⟨w, x0⟩ for all x ∈ C.

Proof. Pick a sequence (yn)
∞
n=1 in Cc converging to x0. By the separating hyperplane theorem (Theo-

rem 3.3.3), there exists a nonzero continuous linear functional fn such that fn(y) ≤ fn(yn) for all y ∈ C

for all n ∈ N. Renormalize the fn to have norm 1 (preserving the separation); by the Banach-Alaoglu

theorem (Theorem 2.7.6), there exists a subsequence (fnk
)∞k=1 converging in weak-* to some continuous

linear functional f with ∥f∥ = 1. For all k ∈ N, we know that fnk
(x) ≤ fnk

(ynk
) for all x ∈ C, so

fnk
(x − x0) ≤ fnk

(ynk
− x0) for all x ∈ C. As k → ∞, the left-hand side converges to f(x − x0) by

weak-* convergence and the right-hand side converges to zero since ∥fnk
∥ = 1 and ynk

→ x0. Hence, we

deduce that f(x) ≤ f(x0) for all x ∈ C, and we conclude by the Riesz-Fréchet representation theorem

(Theorem 2.2.2).

We could have given a purely elementary proof here as well, but the proof above is more general and

gives a simple example of the usefulness of the Banach-Alaoglu theorem. The previous theorems have an

immediate corollary.

Corollary 3.3.4.1. A closed and convex set C is the intersection of all closed half-spaces containing it.

In fact, we can give a useful property of convex l.s.c. functions using the supporting hyperplane theorem.

Theorem 3.3.5. If f is convex and l.s.c. then f is the supremum of affine functions lying below f .

Proof. Since f is l.s.c., we know that epi(f) is closed and convex. By Corollary 3.3.4.1, epi(f) is the

intersection of all closed half-spaces containing it, each represented as {x ∈ Rn : ⟨a, x⟩+ bµ ≤ c} for some

a ∈ Rn and b, c ∈ R. Not all of these half-spaces can have b = 0, since otherwise f is trivial and the theorem

follows immediately. We can’t have b > 0 at all, since the epigraph of f extends upwards infinitely. When

b < 0, we can normalize to b = −1 so that ⟨a, x⟩ − c ≤ µ; this defines an affine function ⟨a, x⟩ − c lying

below f . The constraints induced by half-spaces with b < 0 are the only nontrivial ones, so the result

follows.

3.4 Subgradients and subdifferentials

The idea of subdifferentials is to use a supporting hyperplane to generalize the notion of a derivative for

non-differentiable functions.

Definition 3.4.1 (Subgradient). A vector x∗ is a subgradient of f at x if f(z) ≥ f(x) + ⟨x∗, z − x⟩ for all

z ∈ Rn.
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Definition 3.4.2 (Subdifferential). The subdifferential of f at x is the set of all subgradients at x, denoted

∂f(x).

Although one can theoretically define a subdifferential for any function, we almost always restrict

ourselves to convex functions so that the subdifferential enjoys several nice properties.

Proposition 3.4.1. If f is convex then ∂f(x) is a closed convex set for all x ∈ dom(f). Also, the

subdifferential is nonempty for all x ∈ int(dom(f)), and for all x ∈ dom(f) if f is l.s.c..

Proof. It follows from the supporting hyperplane theorem (Theorem 3.3.4) that the subdifferential is

nonempty under the given conditions. Also, closedness and convexity are immediate from the defini-

tion.

Example 3.4.1 (Subdifferential of the norm). The subdifferential of the Euclidean norm ∥·∥2 at x is

{x/∥x∥2} at every x ̸= 0 and B(0, 1) at x = 0, by Cauchy-Schwarz.

Note that if the gradient exists at a point x, then the subdifferential at that point is a singleton

containing only the gradient; this can be seen by using Jensen’s inequality when taking the directional

derivative at x in the direction of z − x.

3.5 The Legendre-Fenchel transform

The Legendre-Fenchel transform gives a rich duality theory for convex functions.

Definition 3.5.1 (Legendre-Fenchel transform). The Legendre-Fenchel transform of f is the function f∗

defined by

f∗(y) = sup
x∈Rn

{⟨y, x⟩ − f(x)}.

The function f∗ is also called the convex conjugate of f .

In a general normed space X, the Legendre-Fenchel transform can be thought of as a transformation

from B(X∗,R) to R, defined by

f∗(g) = sup
x∈X

{g(x)− f(x)}.

The Legendre-Fenchel transform represents the maximal difference between a linear function ⟨y, x⟩ and

f(x). If f is convex, the Legendre-Fenchel transform is immediately convex as it is the supremum of affine

functions. The following is a simple result, but is fundamental in the theory.

Theorem 3.5.1 (Fenchel-Young inequality). If f is convex then f(x) + f∗(y) ≥ ⟨y, x⟩ for all x, y ∈ Rn.

Equality holds if and only if y ∈ ∂f(x).
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Proof. The inequality is obvious from the previous interpretation of the Legendre-Fenchel transform, and

the equality condition follows from the definition of the subdifferential.

Theorem 3.5.2 (Fenchel-Moreau). If f is l.s.c. and convex, then f∗∗ = f .

Proof. The inequality f ≥ f∗∗ is immediate from definitions. Now, note that for every affine function

a ≤ f , we have a∗∗ = a ≤ f∗∗; in particular, the affine functions lying below f are the same ones below f∗∗.

Taking a supremum over all affine functions a ≤ f and applying Theorem 3.3.5, it follows that f∗∗ ≥ f .
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Chapter 4

Optimal transport

In this chapter, we write about optimal transport theory, primarily using material from Topics in Optimal

Transportation by Cédric Villani and Statistical Optimal Transport by Sinho Chewi, Jonathan Niles-Weed,

and Philippe Rigollet. Some material may also come from Optimal Transport for Applied Mathematicians

by Filippo Santambrogio or Gradient Flows in Metric Spaces and in the Space of Probability Measures by

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré.

4.1 The Monge-Kantorovich problem

The Monge problem is that of finding a deterministic transport map between measures. We let P(X )

denote the set of probability measures over X and T# denote the pushforward operator. In everything

that follows, we will assume X and Y are Polish spaces (complete and separable metric spaces). The main

reason to assume a Polish space setting is so that we can use Prokhorov’s theorem (Theorem 1.1.4) to

extract weakly convergent subsequences from tight sets, as well as for disintegration of measure.

Definition 4.1.1 (Monge problem). If µ ∈ P(X) and ν ∈ P(Y ) and c : X ×Y → R is a cost function, the

Monge problem is

inf
T#µ=ν

∫
c(x, T (x)) dµ(x).

The Kantorovich problem is the problem of finding a stochastic transport plan; one motivation for this

is that there is literally no deterministic transport map from δ0 to 1
2δ−1 +

1
2δ1 and another is that the

Monge problem is highly nonconvex and hard to solve. Let Π(µ, ν) denote the set of couplings between µ

and ν (joint distributions with marginals µ and ν).

38



Definition 4.1.2 (Kantorovich problem). If µ ∈ P(X ) and ν ∈ P(Y) and c : X ×Y → R is a cost function,

the Kantorovich problem is

inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y).

Equivalently, if X and Y are random variables, the Kantorovich problem is to minimize Eπ[c(X,Y )]

over all joint distributions π of X and Y . Here are a few simple facts about the set of couplings.

Proposition 4.1.1. The set of couplings Π(µ, ν) is a nonempty and convex. Also, if (πn)
∞
n=1 is a sequence

in Π(µ, ν), then there exists a weakly convergent subsequence with a limit also in Π(µ, ν).

Proof. Nonemptiness follows from µ × ν ∈ Π(µ, ν) and convexity is obvious. By Prokhorov’s theorem

(Theorem 1.1.4), it suffices to show that Π(µ, ν) is tight and closed. Tightness follows because µ and ν are

simultaneously concentrated on a compact set K, and π((K × K)c) ≤ µ(Kc) + ν(Kc). Note that π is a

coupling if and only if
∫
f(x) dπ(x, y) =

∫
f(x) dµ(x) for all f ∈ Cb(X) and

∫
f(y) dπ(x, y) =

∫
f(y) dν(y)

for all f ∈ Cb(Y ), by the Riesz-Markov representation theorem. Therefore, Π(µ, ν) is closed by the

portmanteau lemma (Theorem 1.1.2).

Proposition 4.1.2. If the cost function c is l.s.c., then the Kantorovich problem has a solution.

Proof. Let πn ∈ Π(µ, ν) be such that∫
c(x, y) dπn(x, y) → inf

π∈Π(µ,ν)

∫
c(x, y) dπ(x, y).

and extract a convergent subsequence πnk
→ π ∈ Π(µ, ν) by Proposition 4.1.1. By (4) in the portmanteau

lemma (Theorem 1.1.2) and because c is l.s.c., we have∫
c(x, y) dπ(x, y) ≤ lim inf

k→∞

∫
c(x, y) dπnk

(x, y) = inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y).

In particular, π solves the Kantorovich problem.

Note that this statement is a special case of the extreme value theorem, which states that l.s.c. functions

must attain their infimum on compact sets.

4.2 Transport maps between empirical averages

In this section, we show that we can fully characterize optimal transport maps between measures associated

to empirical averages. We start by proving the Krein-Milman theorem, which states that points in a

compact convex set in a Banach space can be written as limits of convex combinations of extreme points.
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Theorem 4.2.1 (Krein-Milman). Let K be a nonempty, compact, and convex subset of a Banach space and

let E(K) denote the set of extremal points of K (points that cannot be written as the convex combination

of any two other points). Then for all x ∈ K there exists a probability measure ρx on E(X) such that

x =
∫
E(X) y dρx(y).

Proof. We would first like to show that C := conv(E(K)) = K. Suppose not for a contradiction; then

there exists x ∈ K \ C. By the separating hyperplane theorem (Theorem 3.3.3), there exists a continuous

linear functional f and a constant c such that f(x) > maxy∈C f(y) ≥ maxy∈E(K) f(y) (using compactness

of C and closedness of E(K)). Let M = f−1 (maxx∈C f(x)), which is a nonempty, closed, and compact;

this fact is sometimes called the Krein-Milman lemma and is easy to show. So M has an extreme point z

(which must also be in E(K)) and we have the inequality

f(z) ≥ f(x) > max
y∈C

f(y) ≥ max
y∈E(K)

f(y) ≥ f(z),

giving a contradiction. Then for each x ∈ K, we can extract a sequence of discrete probability measures

ρ
(n)
x such that

∫
y dρ

(n)
x → x as n → ∞. By the Banach-Alaoglu theorem (Theorem 2.7.6), we can extract

a weakly convergent subsequence ρ
(nk)
x with limit ρx, and the result follows since

∫
y dρx = x.

Using the Krein-Milman theorem, we can show Choquet’s theorem, which states that continuous linear

functionals on a compact convex set in a Banach space achieve their minimum at an extreme point.

Theorem 4.2.2 (Choquet). Let K be a nonempty, compact, and convex subset of a Banach space and let

f : K → R be the restriction of a continuous linear functional. Then the minimum of f over K is achieved

at an extreme point of K.

Proof. Note that f has a minimizer x ∈ K since K is compact. By the Krein-Milman theorem (Theo-

rem 4.2.1), there exists a probability measure ρx on E(K) such that x =
∫
E(K) y dρx(y). Then, by continuity

and linearity of f , we have

f(x) = f

(∫
E(K)

y dρx(y)

)
=

∫
E(K)

f(y) dρx(y).

It is easy to formalize this exchange by approximating y 7→ y uniformly on K by simple functions and

applying the dominated convergence theorem. Clearly, this means that ρx cannot give positive mass to

any point y ∈ E(K) such that f(y) > f(x), so there must exist y ∈ E(K) such that f(y) = f(x), which is

the result we wanted.

Using Choquet’s theorem, we can show that the solution to the Kantorovich problem between discrete

measures must be a deterministic permutation; in particular, the Kantorovich problem is equivalent to the

Monge problem in this case.
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Theorem 4.2.3 (Birkhoff). Let Bn denote the set of bistochastic n×n matrices (matrices with nonnegative

entries such that each row and column sums to 1). Then the set of extremal points of Bn is exactly the set

of permutation matrices.

Proof. It’s clear that all permutation matrices are extremal points, so we show the converse. It suffices to

show that whenever M is an extremal point of Bn, all entries of M are either 0 or 1. Suppose that M ∈ Bn

with Mij ∈ (0, 1) for some i, j ∈ [n]. Then make a list of indices in the matrix, first finding another entry

in the same column in (0, 1) and then an entry in the same row from that new point in (0, 1), and so on.

Continue this process until we either end up at the same row or the same column of M . The list will

look something like ((i, j), . . . , (if , jf )); if we ended up at the same column, then we delete (i, j) from the

beginning of our list.

The list is now of even length and only contains entries in (0, 1), so pick ϵ > 0 smaller than the gap

min{min{Mij}ij ,min{1−Mij}ij}. Then we can create a matrix M (1) by bumping the entry of M at the

first index in the list up by ϵ, the entry at the second index down by ϵ, and so on. Similarly, we create a

matrix M (2) by bumping the entry of M at the first index in the list down by ϵ, the entry at the second

index up by ϵ, and so on. Then M = 1
2(M

(1) + M (2)), and because M (1),M (2) ∈ Bn, M cannot be an

extremal point of Bn.

Proposition 4.2.4. The solution to the Kantorovich problem between discrete spaces X and Y where

µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi is a deterministic transport map T : X → Y such that T (xi) = yσ(i)

for some permutation σ ∈ Sn.

Proof. Let Bn denote the set of bistochastic n× n matrices, so that the Kantorovich problem is

inf
π∈Bn

1

n

n∑
i=1

n∑
j=1

πij c(xi, yj).

By Choquet’s theorem (Theorem 4.2.2), the minimum is achieved at an extremal point of Bn, which by

Birkhoff’s theorem (Theorem 4.2.3) is a permutation matrix.

4.3 Wasserstein distances

Suppose (X , d) is a Polish space (a complete and separable metric space). Let Pp(X ) denote the set of

probability measures over X with finite pth moment, meaning that∫
d(x0, x)

p dµ(x) < ∞

for all x0 ∈ X . Let Tp(µ, ν) denote the optimal transportation cost between measures µ and ν if c(x, y) =

d(x, y)p; we can now define the Wasserstein distances on Pp(X ) as follows.
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Definition 4.3.1 (Wasserstein distances). For p ≥ 0, the p-Wasserstein distance between measures µ, ν ∈

Pp is defined as Wp(µ, ν) = Tp(µ, ν)min{1, 1/p}.

Theorem 4.3.1. The p-Wasserstein distance is actually a metric on Pp(X ).

Proof. We may assume p ≥ 1, since otherwise dp is topologically equivalent to d (although it may not be a

metric) and is subadditive. It’s obvious that Wp is finite, symmetric, and nonnegative. If µ = ν, then the

measure dµ(x)×dδx(y) is a coupling, showing that Wp(µ, ν) = 0. On the other hand, if Wp(µ, ν) = 0, there

exists a coupling π such that E(X,Y )∼π[d(X,Y )p] = 0 by Proposition 4.1.2. But now this forces X = Y

almost surely so µ = ν.

Finally, we prove the triangle inequality. First, we need the following lemma, which allows us to put

together measures with a common marginal; essentially, this is a technical lemma that will allow us to put

together optimal transport plans to make a (possibly suboptimal) transport plan.

Lemma 4.3.2 (Gluing). Let µ1, µ2, µ3 be measures on Polish spaces X1,X2,X3 with π12 ∈ Π(µ1, µ2) and

π23 ∈ Π(µ2, µ3). Then there exists a measure π ∈ P(X1 ×X2 ×X3) such that π has marginals π12 and π23

in its restriction to the first two or last two coordinates respectively.

Proof. Applying the disintegration theorem (Theorem 1.4.1) along the second coordinate of π12 and the

first coordinate of π23, we have

π12 =

∫
X2

(π12)y ⊗ δy dµ2(y)

and

π23 =

∫
X2

δy ⊗ (π23)y dµ2(y),

such that y 7→ (π12)y and y 7→ (π23)y are measurable. Then we can define π by

π =

∫
X2

(π12)y ⊗ δy ⊗ (π23)y dµ2(y),

which satisfies the properties of the gluing lemma.

Now, we are ready to complete the proof of the triangle inequality. Consider µ1, µ2, µ3 ∈ Pp(X ) and

let π12 ∈ Π(µ1, µ2) and π23 ∈ Π(µ2, µ3) be optimal transport plans. Glue these together using the gluing

lemma (Lemma 4.3.2) to get π ∈ P(X1 × X2 × X3) and let (X,Y, Z) ∼ π. Then, we have by Minkowski’s

inequality that

Wp(µ1, µ3) ≤ ∥d(X,Z)∥p

≤ ∥d(X,Y ) + d(Y, Z)∥p

≤ ∥d(X,Y )∥p + ∥d(Y, Z)∥p

= Wp(µ1, µ2) +Wp(µ2, µ3).
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Example 4.3.1 (Point masses). Note that Wp(δx, δy) = d(x, y), so (X , d) is isometrically embedded in

(Pp(X ),Wp).
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Appendix A

Supplementary results

We use this appendix to discuss some results that are used in the main text (and which may be of interest

in their own right).

A.1 Zorn’s lemma

In this section, we discuss Zorn’s lemma, which is a generalization of induction to infinite sets. It is

equivalent to the axiom of choice and transfinite induction, so we omit the proof of equivalence here and

assume it as an axiom.

Definition A.1.1 (Poset). A partially ordered set (or poset) is a set P with a binary relation ≤ that is

reflexive, antisymmetric, and transitive.

Note that there may be a, b in a poset where ≤ isn’t defined between them.

Definition A.1.2 (Chain). A chain (or totally ordered set) in a poset P is a subset C ⊆ P such that ≤

is defined between all elements.

Definition A.1.3 (Maximal element). An element m ∈ P is maximal if m ≤ p implies m = p.

Axiom A.1.1 (Zorn’s lemma). If all chains have an upper bound in a nonempty poset P , then there is a

maximal element m ∈ P .

For instance, Zorn’s lemma implies that all vector spaces have Hamel bases and all Hilbert spaces have

a total orthonormal set.
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A.2 The Baire category theorem

In this section, we discuss the Baire category theorem, which prevents points in a complete metric space

from being too sparse.

Definition A.2.1 (Nowhere dense). A set M ⊆ X is nowhere dense if M has empty interior.

Definition A.2.2 (Meager). A set M ⊆ X is meager if it is a countable union of nowhere dense sets and

is nonmeager otherwise.

Theorem A.2.1 (Baire category theorem). If X is a complete metric space, then X is nonmeager. Equiv-

alently, the intersection of countably many open dense sets in X is also dense.

Proof. The proof proceeds by contradiction; we construct a Cauchy sequence using a nested sequence of

balls. Let X =
⋃∞

n=1Mn where each Mn is nowhere dense. Then, M1
c
is nonempty and open, so we can

find a ball B1 ⊆ M1
c
. We can then find a ball B2 ⊆ B1∩M2

c
with radius at most half of B1’s radius, and so

on. This gives a nested sequence of balls B1 ⊇ B2 ⊇ · · · . By the completeness of X, there is a unique point

x ∈
⋂∞

n=1Bn. But now, by construction, X ̸∈ Mn for any n, which gives the desired contradiction.

A.3 Tychonoff’s theorem

In this section, we discuss Tychonoff’s theorem, which states that the product of compact spaces is compact.

Definition A.3.1 (Finite intersection property). A collection F of sets has the finite intersection property

if every finite subcollection of F has nonempty intersection.

The following lemma is a useful characterization of compactness in topological spaces, and is easily

equivalent to the usual definition.

Lemma A.3.1. A topological space X is compact if and only if every collection of closed sets with the

finite intersection property has nonempty intersection.

Proof. The forward direction is elementary and follows from Cantor’s intersection theorem. We’ll now

show the contrapositive of the reverse direction. Suppose that X is not compact and U is a collection of

open sets with no finite subcover. Then, the complements of these sets form a collection of closed sets with

the finite intersection property, but their intersection is empty.

Theorem A.3.2 (Tychonoff). If Xi is compact for all i ∈ I, then
∏

i∈I Xi is compact.
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Proof. Let F be a family of closed sets in
∏

i∈I Xi with the finite intersection property; by Lemma A.3.1,

it suffices to show that F has nonempty intersection. Now, let P be the set of pairs (B, xB) such that

B ⊆ I is finite, xB ∈
∏

i∈B Xi, and for any finite subfamily G ⊆ F there exists y ∈
⋂

G∈G G such that

πB(y) = xB. We define a partial order on P by (B, xB) ≤ (C, xC) if B ⊆ C and πB(xC) = xB (where

πB denotes the projection onto the coordinates in B). It’s clear that any chain has an upper bound, so

by Zorn’s lemma (Axiom A.1.1), there exists a maximal element (M,xM ). If M ̸= I, pick i0 ∈ I \M and

define (for each finite G ⊆ F):

SG =

{
x0 ∈ Xi0 : ∃ y ∈

⋂
G∈G

G such that πM (y) = xM and πi0(y) = x0

}
.

Now, the collection of possible sets SG satisfies the finite intersection property since (M,xM ) ∈ P. Hence,

the intersection of the possible sets SG is nonempty by compactness of Xi0 . But this gives an extension of

(M,xM ), which is a contradiction.
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